Advertisement for orthosearch.org.uk
Results 1 - 20 of 85
Results per page:
Bone & Joint Research
Vol. 5, Issue 11 | Pages 569 - 576
1 Nov 2016
Akahane M Shimizu T Kira T Onishi T Uchihara Y Imamura T Tanaka Y

Objectives. To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Methods. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. Results. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. Conclusions. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis. Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569–576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 250 - 250
1 Jul 2014
Liskova J Babchenko O Varga M Kromka A Hadraba D Svindrych Z Burdikova Z Bacakova L
Full Access

Summary Statement. O-terminated nanocrystalline diamond films proposed as bone implant coatings are promising for adhesion and growth of osteoblasts, as well as for osteogenic cell differentiation and extracellular matrix production. Nanocrystalline diamond (NCD) films are promising materials for tissue engineering, especially for bone implants coating, due to their biocompatibility, chemical resistance and mechanical hardness. Nanostructure and morphology of the NCD films can efficiently mimic the properties of natural tissues, and thus they support the cell adhesion, proliferation and differentiation. In addition, the NCD wettability can be tailored by grafting specific atoms and functional chemical groups (e.g., oxygen, hydrogen, amine groups, etc.) which influence the adsorption and final geometry of proteins, and thus the behaviour of cultivated cells. Therefore, the NCD films are proposed as multifunctional materials for fundamental studies on the growth and adhesion of osteoblasts on bone implants, which is particularly our interest. The NCD films used in this study were grown on silicon substrates by microwave plasma-enhanced chemical vapor deposition. The quality of the grown NCD films was investigated by Raman spectroscopy, scanning electron microscopy and atomic force microscopy. In order to control the hydrophobic or hydrophilic character, the NCD film surfaces were grafted by hydrogen (H-termination) or oxygen (O-termination) atoms. The influence of surface termination on the surface wettability (wetting contact angle) was characterised by reflection goniometry using droplet of deionised water. The primary human osteoblasts and osteoblast-like Saos-2 cells were used for biological studies on H- and O-terminated NCD films. The cell adhesion and spreading was analysed by the visualisation of focal adhesion proteins (talin, paxillin) and actin fibers. Expression of markers of osteogenic cell differentiation (alkaline phosphatase, osteocalcin, collagen I) was monitored by the reverse transcription and Real-time PCR method, and also by immunostaining of expressed proteins and image analysis. The extracellular matrix production and composition, i.e. collagen content, calcium content and activity of alkaline phosphatase, were also quantified. Native type I collagen fibres were visualised by two-photon excitation microscopy and second harmonic generation imaging, together with immunostaining and fluorescence microscopy. We found that primary human osteoblasts cultivated on the O-terminated NCD films exhibited better adhesion compared to the H-terminated NCD films. Also the expression of osteogenic cell markers such as collagen and osteocalcin was higher on the O-terminated films. The mature collagen fibers were detected in Saos-2 cells on both H- and O-terminated NCD films; however, the quantity of collagen in extracellular matrix was higher on O-terminated NCD films. The amount of calcium and alkaline phosphatase activity were also significantly higher in Saos-2 cell layers on O-terminated NCD films. In conclusion, the higher wettability of the O-terminated NCD films (contact angle < 20°) is promising for adhesion and growth of osteoblasts. Besides, the O-terminated surface also seems to support the osteogenic differentiation of the cultivated cells, production of extracellular matrix proteins and subsequent extracellular matrix mineralization. This work was supported within the project “The Centre of Biomedical Research” (CZ.1.07/2.3.00/30.0025). This project is co-funded by the European Social Fund and the state budget of the Czech Republic. Other supports were provided by the Grant Agency of the Czech Republic (grant No. P108/11/0794)


Bone & Joint Research
Vol. 12, Issue 1 | Pages 5 - 8
1 Jan 2023
Im G

Cite this article: Bone Joint Res 2023;12(1):5–8.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 96 - 96
2 Jan 2024
Al-Sharabi N
Full Access

Growing evidence has suggested that paracrine mechanisms of Mesenchymal stem cell (MSC) may be involved in the underlying mechanism of MSC after transplantation, and extracellular vesicles (EVs) are an important component of this paracrine role. The aim of this study was to investigate the in vitro osteogenic effects of EVs derived from undifferentiated mesenchymal stem cells and from chemically induced to differentiate into osteogenic cells for 7 days. Further, the osteoinductive potential of EVs for bone regeneration in rat calvarial defects was assessed. We could isolate and characterize EVs from naïve and osteogenic-induced MSCs. Proteomic analysis revealed that EVs contained distinct protein profiles, with Osteo-EVs having more differentially expressed proteins with osteogenic properties. EVs were found to enhance the proliferation and migration of cultured MSC. In addition, the study found that Osteo-EVs/MEM combination scaffolds could enhance greater bone formation after 4 weeks as compared to native MEM loaded with serum-free media. The study suggests that EVs derived from chemically osteogenic-induced MSCs for 7 days can significantly enhance both the osteogenic differentiation activity of cultured hMSCs and the osteoinductivity of MEM scaffolds. The results indicate that Osteo-MSC-secreted nanocarriers-EVs combined with MEM scaffolds can be used for repairing bone defects


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 81 - 81
2 Jan 2024
van Griensven M
Full Access

Bone regeneration is pivotal for the healing of fractures. In case this process is disturbed a non-union can occur. This can be induced by environmental factors such as smoking, overloading etc. Co-morbidities such as diabetes, osteoporosis etc. may be more intrinsic factors besides other disturbances in the process. Those pathways negatively influence the bone regeneration process. Several intrinsic signal transduction pathways (WNT, BMP etc.) can be affected. Furthermore, on the transcriptional level, important mRNA expression can be obstructed by deregulated miRNA levels. For instance, several miRNAs have been shown to be upregulated during osteoporotic fractures. They are detrimental for osteogenesis as they block bone formation and accelerate bone resorption. Modulating those miRNAs may revert the physiological homeostasis. Indeed, physiological fracture healing has a typical miRNA signature. Besides using molecular pathways for possible treatment of non-union fractures, providing osteogenic cells is another solution. In 5 clinical cases with non-union fractures with defects larger than 10 cm, successful administration of a 3D printed PCL-TCP scaffold with autologous bone marrow aspirate concentrate and a modulator of the pathogenetic pathway has been achieved. All patients recovered well and showed a complete union of their fractures within one year after start of the regenerative treatment. Thus, non-union fractures are a diverse entity. Nevertheless, there seem to be common pathogenetic disturbances. Those can be counteracted at several levels from molecular to cell. Compositions of those may be the best option for future therapies. They can also be used in a more personalized fashion in case more specific measurements such as miRNA signature and stem cell activity are applied


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 140 - 140
11 Apr 2023
Gens L Marchionatti E Steiner A Stoddart M Thompson K Mys K Zeiter S Constant C
Full Access

Autologous cancellous bone graft is the gold standard in large bone defect repair. However, studies using autologous bone grafting in rats are rare and donor sites as well as harvesting techniques vary. The aim of this study was to determine the feasibility of autologous cancellous bone graft harvest from 5 different anatomical sites in rats and compare their suitability as donor sites for autologous bone graft. 13 freshly euthanised rats were used to describe the surgical approaches for autologous bone graft harvest from the humerus, iliac crest, femur, tibia and tail vertebrae (n=4), determine the cancellous bone volume and microstructure of those five donor sites using µCT (n=5), and compare their cancellous bone collected qualitatively by looking at cell outgrowth and osteogenic differentiation using an ALP assay and Alizarin Red S staining (n=4). It was feasible to harvest cancellous bone graft from all 5 anatomical sites with the humerus and tail being more surgically challenging. The microstructural analysis showed a significantly lower bone volume fraction, bone mineral density, and trabecular thickness of the humerus and iliac crest compared to the femur, tibia, and tail vertebrae. The harvested volume did not differ between the donor sites. All donor sites apart from the femur yielded primary osteogenic cells confirmed by the presence of ALP and Alizarin Red S stain. Bone samples from the iliac crest showed the most consistent outgrowth of osteoprogenitor cells. The tibia and iliac crest may be the most favourable donor sites considering the surgical approach. However, due to the differences in microstructure of the cancellous bone and the consistency of outgrowth of osteoprogenitor cells, the donor sites may have different healing properties, that need further investigation in an in vivo study


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 139 - 139
2 Jan 2024
van Griensven M
Full Access

Anatomically, bone consists of building blocks called osteons, which in turn comprise a central canal that contains nerves and blood vessels. This indicates that bone is a highly innervated and vascularized tissue. The function of vascularization in bone (development) is well-established: providing oxygen and nutrients that are necessary for the formation, maintenance, and healing. As a result, in the field of bone tissue engineering many research efforts take vascularization into account, focusing on engineering vascularized bone. In contrast, while bone anatomy indicates that the role of innervation in bone is equally important, the role of innervation in bone tissue engineering has often been disregarded. For many years, the role of innervation in bone was mostly clear in physiology, where innervation of a skeleton is responsible for sensing pain and other sensory stimuli. Unraveling its role on a cellular level is far more complex, yet more recent research efforts have unveiled that innervation has an influence on osteoblast and osteoclast activity. Such innervation activities have an important role in the regulation of bone homeostasis, stimulating bone formation and inhibiting resorption. Furthermore, due to their anatomical proximity, skeletal nerves and blood vessels interact and influence each other, which is also demonstrated by pathways cross-over and joint responses to stimuli. Besides those closely connected sytems, the immune system plays also a pivotal role in bone regeneration. Certain cytokines are important to attract osteogenic cells and (partially) inhibit bone resorption. Several leukocytes also play a role in the bone regeneration process. Overall, bone interacts with several systems. Aberrations in those systems affect the bone and are important to understand in the context of bone regeneration. This crosstalk has become more evident and is taken more into consideration. This leads to more complex tissue regeneration, but may recapitulate better physiological situations


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 11 - 11
1 Jul 2014
Guo B Wang X Hong A Lu A Zhang B Zhang G
Full Access

Summary Statement. The stable inhibition of miR-214 in the aged osteoporotic rats induced by OVX could be achieved by periodic administration of AntagomiR-214 at a dosage of 4 mg/kg and at an interval of 7 days, which will provide a potential bone anabolic strategy for treatment of osteoprosis. Introduction. MiR-214 has a crucial role in suppressing bone formation and miR-214 inhibition in osteogenic cells may be a potential anabolic strategy for ameliorating osteoporosis (Wang X, et al. 2013). An aged ovariectomised rat has been regarded as a golden model to test bone anabolic agents for reversing established osteoporosis in aged postmenopausal women (Li X, et al. 2009). However, there is still lack of evidence to demonstrate bone anabolic potential of therapeutic inhibition of miR-214 within osteogenic cells in the golden model. So, it should be necessary to establish RNAi-based administration protocol toward stable inhibition of miR-214 at a low level in the golden model. A targeted delivery system specifically facilitating Antagomir-214 approaching osteogenic cells, i.e. (Asp-Ser-Ser). 6. -liposome (Zhang G, et al 2012), was employed in this study. Objectives. This study was to investigate optimal dosage and duration for therapeutic inhibition of miR-214 within osteogenic cells in the aged osteoporotic rats induced by ovariectomy. Materials and Methods. Six-month-old female Sprague-Dawley rats were ovariectomised (OVX) and left untreated for 12 months to establish aged osteoporosis. To determine the optimal dosage for therapeutic inhibition of miR-214, the OVX rats were injected intravenously with the AntagomiR-214 at a dosage of 0.5mg/kg, 1mg/kg, 2mg/kg, 4mg/kg, 6mg/kg and 8mg/kg (n=6 for each dosage group) delivered by (Asp-Ser-Ser). 6. -liposome, respectively. Thereafter, miR-214 expression level in osteogenic cells from bilateral femur was quantified at day 2 post injection by real-time PCR analysis in combination with laser captured dissection (LCM). To determine the optimal duration of miR-214, the OVX rats were intravenously injected with the AntagomiR-214 (AntagomiR-214 group) or non-sense AntagomiR-214 (NC group) delivered by (Asp-Ser-Ser). 6. -liposome at the optimal dosage or (Asp-Ser-Ser). 6. -liposome alone (Vehicle group). Then, the miR-214 level in osteogenic cells from bilateral femur was quantified at 1, 3, 5, 7, 9, 12, 14, 16, 21 day after the single dosing (n=6 for each time-point) by real-time PCR analysis in combination with LCM, respectively. To examine the long-term effect of the AntagomiR-214 after periodic pulsed dosing, the OVX rats were administrated with the AntagomiR-214 at the optimal dosage and duration for 5 repeated injections and then the miR-214 level in osteogenic cells from bilateral femur was quantified by real-time PCR analysis in combination with LCM. Results. The miR-214 level was efficiently decreased in a dose-dependent manner by the AntogomiR-214 and reached the level lower than 10% of the baseline at a dosage of 4 mg/kg at least in the aged osteoporotic rats. The effective duration for miR-214 at a level lower than 50% of the baseline lasted for 7 days in the osteoporotic rats after the single dosing. The miR-214 level was continuously lowered until 28 days and continuously maintained later at the level lower than 10% of the baseline by the 5 pulsed dosing of the AntagomiR-214 at an interval of 7 days and at a dosage of 4 mg/kg in the osteoporotic rats. Conclusions. The stable inhibition of miR-214 for bone anabolic strategy in the aged osteoporotic rats induced by OVX could be achieved by periodic administration of AntagomiR-214 at a dosage of 4 mg/kg and at an interval of 7 days


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 49 - 49
14 Nov 2024
Chen YS Lian WS Lin Y Wang F
Full Access

Introduction. Promoting bone mass homeostasis keeps skeleton away from osteoporosis. a-Ketoglutarate (a-KG) is an indispensable intermediate of tricarboxylic acid cycle (TCA) process for cellular energy production. a-KG mitigates cellular senescence, tissue degeneration, and oxidative stress. We investigated whether a-KG affected osteoblast activity or osteoporosis development. Method. Serum and bone specimens were biopsied from 26 patients with osteoporosis or 24 patients without osteoporosis who required spinal surgery. Ovariectomized or aged mice were fed 0.25% or 0.75% a-KG in drinking water for 8 – 12 weeks ad libitum. Bone mineral density, trabecular/cortical bone microarchitecture, mechanical strength, bone formation, and osteoclastic erosion were investigated using mCT, material testing device, in vivo calcein labelling, and TRAP histochemical staining. Serum a-KG, osteocalcin, and TRAP5b levels were quantified using ELISA kits. Bone-marrow mesenchymal cells and macrophages were incubated osteogenic and osteoclastogenic media. Histone H3K27me3 levels and enrichment were investigated using immunoblotting and chromatin precipitation-PCR. Result. Serum a-KG levels in patients with osteoporosis were less than controls; and were correlated with T-scores of hips (R2 = 0.6471, P < 0.0001) and lumbar spine (R2 = 0.7235, P < 0.001) in osteoporosis (AUC = 0.9941, P < 0.001). a-KG supplement compromised a plethora of osteoporosis signs in ovariectomized or aged mice, including bone mass loss, trabecular bone microarchitecture deterioration, and mechanical strength loss. It elevated serum osteocalcin levels and decreased serum TRAP5b. a-KG preserved caclein-labelling bone formation and repressed osteoclast resorption. It reversed osteogenic differentiation of bone-marrow stromal cells and reduced osteoclast formation in ovariectomized mice. Mechanically, a-KG attenuated H3K27 hypermethylation and Runx2 transcription repression, improving mineralized matrix production in osteogenic cells. Conclusion. Decreased serum a-KG is correlated with human and murine osteoporosis. a-KG reverses bone loss by repressing histone methylation in osteoblasts. This study highlighted a-KG supplement as a new biochemical option for protecting osteoporosis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 126 - 126
4 Apr 2023
Koblenzer M Weiler M Pufe T Jahr H
Full Access

Many age-related diseases affect our skeletal system, but bone health-targeting drug development strategies still largely rely on 2D in vitro screenings. We aimed at developing a scaffold-free progenitor cell-based 3D biomineralization model for more physiological high-throughput screenings. MC3T3-E1 pre-osteoblast spheroids were cultured in V-shaped plates for 28 days in alpha-MEM (10% FCS, 1% L-Gln, 1X NEAA) with 1% pen/strep, changed every two days, and differentiation was induced by 10mM b-glycerophosphate and 50µg/ml ascorbic-acid. Osteogenic cell differentiation was assessed through profiling mRNA expression of selected osteogenic markers by efficiency corrected normalized 2^DDCq RT-qPCR. Biomineralization in spheroids was evaluated by histochemistry (Alizarin Red/von Kossa staining), Alkaline phosphatase (Alp) activity, Fourier transform infrared spectroscopy (FTIR) analyses, micro-CT analyses, and scanning electron microscopy on critical point-dried samples. GraphPad Prism 9 analyses comprised Shapiro-Wilk and Brown-Forsythe tests as well as 2-way ANOVA with Tukey post-hoc and non-parametric Kruskal-Wallis with Dunn post-hoc tests. During mineralization, as opposed to non-mineralizing conditions, characteristic mRNA expression profiles of selected early and late osteoblast differentiation markers (e.g., RunX, Alp, Col1a1, Bglap) were observed between day 0 and 28 of culture; Alp was strongly upregulated (p<0.001) from day 7 on, followed by its enzymatic activity (p<0.001). Bglap and Col1a1 expression peaked on (p<0.001) and from day 14 on (p<0.05), respectively. IHC revealed osteocalcin staining in the spheroid core regions at day 14, while type I collagen staining of the cores was most prominent from day 21 on. Alizarin Red and Von Kossa confirmed central and radially outwards expanding mineralization patterns between day 14 and day 28, which was accompanied by a steady increase in extracellular calcium deposition over time (p<0.001). Micro-CT analyses allowed quantitative appreciation of the overall increase in mineral density over time (day21, p<0.05; d28, p<0.001), while SEM-EDX and FTIR ultimately confirmed a bone-like hydroxyapatite mineral deposition in 3D. A novel and thoroughly characterized versatile bone-like 3D biomineralization in vitro model was established, which allows for studying effects of pharmacological interventions on bone mineralization ex vivo under physiomimetic conditions. Ongoing studies currently aim at elucidating in how far it specifically recapitulates intramembranous ossification


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 454 - 454
1 Oct 2006
Vaccaro A
Full Access

Arthrodesis of the spine is the preferred surgical treatment for a number of pathological disorders. This process is dependent on three primary components: osteogenic cells with osteoblastic potential, osteoinductive growth factors and an osteoconductive scaffold that facilitates bone formation and vascular ingrowth. Several systemic and local factors are known to affect the rate of spinal fusion. Autogenous bone graft remains the gold standard graft material for spinal fusion. It is the only graft material that supplies the three primary components necessary for a solid fusion. Unfortunately autogenous bone is only available in limited quantities and the procurement of autograft is associated with significant donor site morbidity. A number of different bone graft materials have been developed as alternatives to autograft. These materials may be classified into two major groups, bone graft extenders used to augment autograft, or bone graft substitutes. Several different bone graft materials have been developed including allograft, osteoconductive matrices, demineralised bone matrices, bone marrow aspiration, autologous platelet concentration, growth factors and gene therapy. Allograft is currently the most widely used substitute for autogenous bone. Because any osteogenic cells are eradicated during the tissue processes, allograft is primary osteoinductive with minimal osteoinductive potential. Processing may affects the structural and biological characteristics of a graft. The incorporation of allograft occurs by a process similar to that observed with autograft but more slowly and is less complete. Osteoconductive scaffolds do not contain any osteogenic cells or osteoinductive factors and are used as a composite graft as a carrier for either osteogenic cells or osteoinductive growth factors. They are biocompatible and do not illicit a response. There is also no inherent risk of infection and availability is unlimited. These materials are brittle with poor mechanical properties and need to be protected from excessive biomechanical forces until fully incorporated. A number of osteoconductive scaffolds have been developed including ceramics, calcium sulfate, mineralized collagen, bioactive glasses, and porous metals. Dematerialized bone matrices (DMPs) are osteoinductive with variable osteoconductive properties. DMPs consist of Type I collagen and non-collagenous proteins including multiple signaling proteins. The osteoinductive activity of DMPs is due to a small fraction of bone morphogenic proteins. There is significant variability in the osteoinductive potentials and clinical efficacy of DBMs. DBMs are most effective when combined with autograft or bone marrow aspirate. Bone marrow aspiration provides osteogenetic cells and osteoinductive growth factors but must be combined with an osteoconductive carrier to form a composite graft. It is associated with minimal morbidity compared to the use of autograft and is easily obtained. Unfractionated bone marrow contains only moderate osteogenic potential. Selective retention technology can increase the number of osteogenic cells then combined with an osteoconductive carrier such as a collagen sponge or DBM. Activated platelets release multiple factors that may enhance bone formation by promoting chemotaxis, cellular proliferation and differentiation of stem cells. Platelets do not release BMPs so this autologous platelet concentrate is not inductive. Concentrated platelet rich plasma gel is combined with an osteoconductive scaffold or osteogenic cells to form a composite graft for implantation. The capacity for fusion by this technique may be inferior to autologous graft. Bone morphogenetic proteins are low molecular weight proteins related to the transforming growth factor beta superfamily. They bind receptors on the surface of osteoprogenitor stem cells and activate intracellular signal transduction cascades resulting in the osteoblastic differentiation of pluripotential stem cells. Recombinant BMPs are typically combined with an osteoconductive carrier to form a composite graft. Recombinant BMPs have been used successfully in spinal fusions and may be superior to autograft. Gene therapy involves the transfer of specific DNA sequence into target cells that express the protein of interest. Gene therapy may provide a more potent osteoinductive signal than recombinant growth factors because the sustained local release of osteogentic proteins may be more physiologic than the administration of a single large dose of recombinant factors. There are potential safety concerns and economic issues. Autogenous bone remains the gold standard of graft material; however composite grafts consisting of multiple materials may prove to be efficacious for stimulating a spinal fusion


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 371 - 372
1 Oct 2006
Wan C Marsh D Li G
Full Access

Introduction: Sufficient quantity of osteogenic cells is an essential aspect for a successful cell therapy in the treatment of difficult bone fractures and defects. At present, this was achieved by culturing bone marrow and bone-derived cells in a relatively long duration. A large number of the non-adherent mesenchymal stem cells were discarded during medium change. We hypothesize that collecting the non-adherent cells and re-plating them may result in more osteogenic cells in the same duration of cell culture. The aim of this study was to investigate the possibility of enhancing number of osteogenic cells by collecting non-adherent cells in the pull-off media and to examine their osteognic potentials. Methods: Mononuclear cells were isolated by density gradient centrifugation method from bone marrow washouts in the bone samples obtained from 5 patients undergone total hip replacement. Mononuclear cells were plated at a density of 1 x 10. 6. /cm. 2. in a T-75 flask with αMEM medium and 15% FCS. The first medium change was made at day 7 and every 3 days thereafter. For the first three times of medium change, the removed media were centrifuged at 250 g for 10 minutes and plated in a separate T-75 (first time change) and T-25 flask (for the 2nd and 3rd times change). The non-adherent cells from the second and the third puff-off flasks were also collected and plated in separate T-25 flasks. Thus, 1xT-75 flask and 4xT-25 flasks of non-adherent cells resulted from the original T-75 flask. The cells in all flasks were harvested at 21 days from the day when the original flask was set up. The total number of cells in all pull off flasks were counted and compared with that of the original T-75 flask. Rate of cell proliferation with or without osteogenic growth medium were also examined by MTT method for passage 1 of both cells types. Osteogenic differentiation was defined with immunocytochemistry of bone markers: ALP, type I collagen, Osteocalcin and cbfa1. It is planed that cells of passage 2 will be mixed with HA powders and to be implanted into the SCID mice to examine the in-vivo osteogenic potential of these cells. Results: Mesenchymal stem cells (MSCs) derived from the non-adherent population of human bone marrow culture have demonstrated having similar cell proliferation and differentiation potential in vitro, when compared to the MSCs derived from the adherent cell population. These cells expressed bone markers such as: ALP, type I collagen, osteocalcin and cbfa1. When the non-adherent cells were collected and cultured accumulatively, the total number of MSCs was increased to an average of 39.7% (36.6%–42.9%), compared to the number of cells obtained from the original T-75 flask. Conclusions: Collecting the non-adherent cell population in the bone marrow culture appeared to result in more MSCs. This harvesting method may be used as a non-invasive way for enhancing MSC numbers in a given period of time. Further in vitro and in vivo studies of these MSCs of non-adherent origins may provide information for optimizing cell culture protocols for rapid expanding the osteogenic cells in vitro. This will facilitate the clinical applications of human osteogenic cell therapy


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 59 - 59
1 Mar 2021
Kou C Lian W Wang F
Full Access

Glucocorticoid excess is shown to deteriorate bone tissue integrity, increasing the risk of osteoporosis. Marrow adipogenesis at cost of osteogenesis is a prominent feature of this osteoporosis condition. Epigenetic pathway histone deacetylase (HDAC)-mediated histone acetylation regulates osteogenic activity and bone mass. This study is aimed to figure out what role of acetylated histone reader bromodomain-containing protein 4 (BRD4) did play in glucocorticoid-induced osteoporosis. Bone-marrow mesenchymal stem cells were incubated in osteogenic medium with or without 1 μM dexamethasone. Mineralized matrix and adipocyte formation were probed using von Kossa and Nile Red O staining, respectively. Osteogenic and adipogenic marker expression were quantified using RT-PCR. The binding of acetylated histone to promoter of transcription factors were detected using chromatin immunoprecipitation-PCR. Bone mineral density and microstructure in osteoporotic bone were quantified with microCT system. Glucocorticoid repressed osteogenic transcription factor Runx2 expression and mineralized matrix formation along with a low level of acetylated lysine 9 at histone 3 (H3K9ac), whereas BRD4 signaling and adipocytic formation were increased in cell cultures. BRD4 knockdown reversed the H3K9ac enrichment in Runx2 promoter and osteogenesis, but downregulated adipogenic differentiation. Silencing BRD4 attenuated H3K9ac occupancy in forkhead box P1 (Foxp1) relevant to lipid metabolism upon glucocorticoid stress. Foxp1 interference downregulated adipogenic activities of glucocorticoid-treated cells. In vivo, treatment with BRD4 inhibitor JQ-1 compromised the glucocorticoid-induced bone mineral density loss, spare trabecular structure, and fatty marrow, as well as improved biomechanical properties of bone tissue. Taken together, BRD4-mediated Foxp1 pathways drive mesenchymal stem cells shifting toward adipocytic cells rather than osteogenic cells to aggravates excessive marrow adipogenesis in the process of glucocorticoid-induced osteoporosis. Pharmacological inhibition of BRD4 signaling protects bone tissue from bone loss and fatty marrow in glucocorticoid-treated mice. This study conveys a new molecular insight into epigenetic regulation of osteogenesis and adipogenesis in osteoporotic skeleton and highlight the remedial effect of BRD4 inhibitor on glucocorticoid-induced bone loss


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 70 - 70
1 Mar 2021
Stich T Krenek T Kovarik T Docheva D
Full Access

Numerous implanted hip and knee joint arthroplasties have to be replaced due to early or late loosening of the implant, a failure of osteointegration with fibrous tissue at the bone-implant-interface. This could be counteracted by ensuring that cells which attach to the implant surface differentiate towards bone cells afterwards. For this reason, human mesenchymal stem cells (hMSCs) will be included in this study. These cells are naturally available at the bone-implant-interface, multipotent and therefore ideal to study the osteoinductivity of a material. The goal of this pilot study was to test the cell response towards three different titanium grades with a novel surface structuring, as a first step towards achieving an improved implant surface for enhanced osteointegration. Disk-shaped titanium scaffolds with a diameter of 12 mm and a height of 1.2 mm were used. The surface topography (500 µm × 500 µm × 300 µm pores) was generated via laser treatment of the surface. By using nanosecond pulsed laser technique, a rough surface with micro- and nanostructural (titanium droplets) features was automatically formed. Three different batches made of commercially pure titanium grades 1 and 2 (Ti1/Ti2) or Ti6Al4V alloy grade 5 (Ti5) were produced. Four cell types were analysed on these batches: primary hMSCs from one donor (m, 25 y), periosteum derived cells (PDCs), human osteoblasts (hOBs) and periodontal ligament cells (PDLs). Cells were seeded on Ti1, Ti2 and Ti5 scaffolds in triplicates. Resazurin assay to examine cell viability was conducted with all cell types. Measurements were executed on several days after seeding, from day one up to day 14. Actin staining as well as live/dead staining was performed with hMSCs cultured on titanium for 1, 3, 5 or 7 days. The cell viability assay revealed early turning points of growth for osteogenic hOBs (day 3) and PDCs (day 7). HMSCs grew steadily on the material and non-osteogenic PDLs stayed in plateau throughout the cultivation period. With respect to the material, cells demonstrated better proliferation on Ti1 and Ti2 than on Ti5. Live/dead staining showed a high survival rate of hMSCs at each time point and on all three titanium grades, with a neglectable number of dead cells. Actin staining confirmed an enhanced spreading and stretching of hMSCs on Ti1 and Ti2 compared to hMSCs on Ti5. Our pilot data indicates that cells react to different titanium compositions, revealed by increased proliferation on commercially pure titanium (Ti1/2). Furthermore, our results demonstrate that osteogenic cells prefer the novel surface structuring in comparison to non-osteogenic PDL cells, which stayed in plateau. The turning points of growth (hOBs/PDCs) suggest an osteosupportiveness of the surface. Although hMSCs did not show a turning point in growth, their growth was steady and resulted in the highest number of cells along with a well stretched morphology. Due to their good proliferation and response to the material, hMSCs are currently being used for evaluating the osteogenic potential of the novel scaffolds


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 81 - 81
1 Jul 2020
Wang F Sun Y Ke H
Full Access

Osteoporosis accounts for a leading cause of degenerative skeletal disease in the elderly. Osteoblast dysfunction is a prominent feature of age-induced bone loss. While microRNAs regulate osteogenic cell behavior and bone mineral acquisition, however, their function to osteoblast senescence during age-mediated osteoporosis remains elusive. This study aims to utilize osteoblast-specific microRNA-29a (miR-29a) transgenic mice to characterize its role in bone cell aging and bone mass. Young (3 months old) and aged (9 months old) transgenic mice overexpressing miR-29a (miR-29aTg) driven by osteocalcin promoter and wild-type (WT) mice were bred for study. Bone mineral density, trabecular morphometry, and biomechanical properties were quantified using μCT imaging, material testing system and histomorphometry. Aged osteoblasts and senescence markers were probed using immunofluorescence, flow cytometry for apoptotic maker annexin V, and RT-PCR. Significantly decreased bone mineral density, sparse trabecular morphometry (trabecular volume, thickness, and number), and poor biomechanical properties (maximum force and breaking force) along with low miR-29a expression occurred in aged WT mice. Aging significantly upregulated the expression of senescence markers p16INK4a, p21Waf/Cip1, and p53 in osteoporotic bone in WT mice. Of note, the severity of bone mass and biomechanical strength loss, as well as bone cell senescence, was remarkably compromised in aged miR-29aTg mice. In vitro, knocking down miR-29a accelerated senescent (β-galactosidase activity and senescence markers) and apoptotic reactions (capsas3 activation and TUNEL staining), but reduced mineralized matrix accumulation in osteoblasts. Forced miR-29a expression attenuated inflammatory cytokine-induced aging process and retained osteogenic differentiation capacity. Mechanistically, miR-29a dragged osteoblast senescence through targeting 3′-untranslated region of anti-aging regulator FoxO3 to upregulate that of expression as evident from luciferase activity assessment. Low miR-29a signaling speeds up aging-induced osteoblast dysfunction and osteoporosis development. Gain of miR-29a function interrupts osteoblast senescence and shields bone tissue from age-induced osteoporosis. The robust analysis sheds light to the protective actions of miR-29a to skeletal metabolism and conveys a perspective of miR-29a signaling enhancement beneficial for aged skeletons


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 16 - 16
1 Dec 2020
Kontakis MG Schou J Hailer N
Full Access

Bone tissue engineering attempts at substituting critical size bone defects with scaffolds that can be primed with osteogenic cells, usually mesenchymal stem cells (MSC) from the bone marrow. Although overlooked, peripheral blood is a valuable source of MSC and circulating osteoprogenitors (COP), bearing a significant regenerative potential, and peripheral blood is easier to access than bone marrow. We thus studied osteodifferentiation of peripheral blood mononuclear cells (pbMNC) under different culture conditions, and how they compared to primary human osteoblasts. pbMNC were isolated from healthy adult volunteers by Ficoll density gradient centrifugation, and they were then cultured using media supplemented with 100nM Dexamethasone, 10mM sodium β-glycero phosphate and ascorbic acid (either 40mM or 0.05mM). For comparison, primary osteoblasts were isolated from the femoral heads of patients undergoing hip arthroplasty. After 4 weeks of culture, osteogenic activation was quantified with spectrometric measurement of alkalic phosphatase (ALP) and lactate dehydrogenase (LDH) levels. The extent of osteoid mineralization was measured with Alizarin red staining. We studied the effects of 1) varying cell concentration at seeding, 2) surface coating of culture wells with collagen and 3) high compared to low ascorbic acid (40mM and 0.05mM) media. Higher numbers of pbMNC (0.5–5.9 versus 0.062–0.25 million cells per well) at seeding resulted in a lower ALP/LDH-ratio (mean ± standard deviation), 0.39 ± 0.33 arbitrary units (AU) versus 1.36 ± 1.06 AU, but led to higher amount of osteoid production, 0.10 ± 0.06 versus 0.065 ± 0.02 AU, p < 0.05. Culture of pbMNC on collagen did not confer any difference in ALP/LDH-ratios, with 0.43 ± 0.3 AU for collagen-coated and 0.43 ± 0.41 AU for uncoated wells (p = 0.95), and we also observed no relevant difference in osteoid production (0.07 ± 0.01 AU for collagen-coated versus 0.1 ± 0.08 AU for uncoated wells, p = 0.28). Cultures of pbMNC on collagen in media supplemented with a higher concentration of ascorbic acid showed a 130% higher ALP/LDH-ratio when compared to cultures exposed to a lower ascorbic acid concentration (p < 0.05). Cultures with a low initial concentration of pbMNC (0.5 − 1 million cells) had no significantly different ALP/LDH-ratio when compared to primary human osteoblasts, but the cultures of pbMNC resulted in a 90% increase in osteoid mineralization when compared to primary human osteoblasts (p < 0.05). These findings indicate that progenitor cells derived from peripheral blood have a significant osteogenic potential, rendering them interesting candidates for seeding of scaffolds intended to fill critical sized bone defects. pbMNC produced almost double the amount of osteoid as primary osteoblasts. The isolation of pbMSC and COP is non-invasive and easy, and they might be seeded directly onto scaffolds without prior ex-vivo expansion, a question that we intend to pursue further


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 117 - 117
1 Dec 2020
Elsayed SAH Allen MJ
Full Access

Millions of patients each year suffer from challenging non-healing bone defects secondary to trauma or disease (e.g. cancer, osteoporosis or osteomyelitis). Tissue engineering approach to non-healing bone defects has been investigated over the past few decades in a search for a novel solution for critical size bone defects. The success of the tissue engineering approach relies on three main pillars, the right type of cells; and appropriate scaffold; and a biologically relevant biochemical/ biophysical stimuli. When it comes to cells the mesodermal origin of mesenchymal stem cells and its well demonstrated multipotentiality makes it an ideal option to be used in musculoskeletal regeneration. For the presented set of experimental assays, fully characterised (passage 3 to 5)ovine adipose-derived mesenchymal stems cells (Ad-MSC) were cultured either in growth medium (GM) consisting of Dulbecco's Modification of Eagle's Medium (DMEM) supplemented with 10% (v/v) foetal bovine serum and 1% penicillin-streptomycin as a control or in osteogenic differentiation medium (DM), consisting of GM further supplemented with L- ascorbic acid (50 μg/ml), β-glycerophosphate (10 mM) and dexamethasone (100nM). Osteogenic differentiation was assessed biochemically by quantifying alkaline phosphatase (ALP) enzyme activity and alizarin red staining after 3, 7, 14 and 21 days in culture (where 1×105 cells/well were seeded in 24 well-plate, n=6/media type/ time point). Temporal patterns in osteogenic gene expression were quantified using real-time PCR for Runx-2, osteocalcin (OC), osteonectin (ON) and type 1 collagen (Col 1) at days 7, 15 and 21 (where 1×105 cells were seeded in T25 cell culture flasks for RNA extraction, n= 4 / gene/ media type/time point). The morphology of osteogenic cells was additionally evaluated by scanning electron microscopy (SEM) of cells seeded at low-density (1×102 cells) on glass coverslips for 2 weeks in GM or DM. The level of ALP activity of cells grown in osteogenic DM was significantly higher than the control growing in the standard growth medium (p ≤ 0.05) at days 3, 7 and 14. At 21 days there was a sharp drop in ALP values in the differentiating cells. Mineralisation, as evidenced by alizarin red staining, increased significantly by day 14 and then peaked at day 21. Quantitative real-time PCR confirmed early increases in Runx-2, Col 1 and osteonectin, peaking in the second week of culture, while osteocalcin peaked at 21 days of culture. Taken as a whole, these data indicate that ovine-MSCs exhibit a tightly defined pathway of initial proliferation and matrix maturation (up to 14 days), followed by terminal differentiation and mineralisation (days 14 to 21). SEM analysis confirmed the flattened, roughened appearance of these cells and abandoned extracellular matrix which resembled mature osteoblasts. Given the ready availability of adipose tissues, the use of Ad-MSCs as progenitors for bone tissue engineering applications is both feasible and reasonable. The data from this study indicate that Ad-MSCs follow a predictable pathway of differentiation that can be tracked using validated molecular and biochemical assays. Additional work is needed to confirm that these cells are osteogenic in vivo, and to identifying the best combination of scaffold materials and cell culture techniques (e.g. static versus dynamic) to accelerate or stimulate osteogenic differentiation for bone tissue engineering applications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 92 - 92
1 Jul 2020
Niedermair T Straub R Schirner S Seebröker R Grässel S
Full Access

Previous studies have described an age-dependent distortion of bone microarchitecture for α-CGRP-deficient mice (3). In addition, we observed changes in cell survival and activity of osteoblasts and osteoclasts isolated from young wildtype (WT) mice when stimulated with α-CGRP whereas loss of α-CGRP showed only little effects on bone cell metabolism of cells isolated from young α-CGRP-deficient mice. We assume that aging processes differently affect bone cell metabolism in the absence and presence of α-CGRP. To further explore this hypothesis, we investigated and compared cell metabolism of osteoblasts and bone marrow derived macrophages (BMM)/osteoclast cultures isolated from young (8–12 weeks) and old (9 month) α-CGRP-deficient mice and age matched WT controls. Isolation/differentiation of bone marrow macrophages (BMM, for 5 days) to osteoclasts and osteoblast-like cells (for 7/14/21 days) from young (8–12 weeks) and old (9 month) female α-CGRP−/− and WT control (both C57Bl/6J) mice according to established protocols. We analyzed cell migration of osteoblast-like cells out of femoral bone chips (crystal violet staining), proliferation (BrdU incorporation) and caspase 3/7-activity (apoptosis rate). Alkaline phosphatase (ALP) activity reflects osteoblast bone formation activity and counting of multinucleated (≥ 3 nuclei), TRAP (tartrate resistant acid phosphatase) stained osteoclasts reflects osteoclast differentiation capacity. We counted reduced numbers of BMM from young α-CGRP−/− mice after initial seeding compared to young WT controls but we found no differences between old α-CGRP−/− mice and age-matched controls. Total BMM number was higher in old compared to young animals. Migration of osteoblast-like cells out of bone chips was comparable in both, young and old α-CGRP−/− and WT mice, but number of osteoblast-like cells was lower in old compared to young animals. Proliferation of old α-CGRP−/− BMM was higher when compared to age-matched WT whereas proliferation of old α-CGRP−/− osteoblasts after 21 days of osteogenic differentiation was lower. No differences in bone cell proliferation was detected between young α-CGRP−/− and age-machted WT mice. Caspase 3/7 activity of bone cells from young as well as old α-CGRP−/− mice was comparable to age-matched controls. Number of TRAP-positive multinucleated osteoclasts from young α-CGRP−/− mice was by trend higher compared to age-matched WT whereas no difference was observed in osteoclast cultures from old α-CGRP−/− mice and old WT. ALP activity, as a marker for bone formation activity, was comparable in young WT and α-CGRP−/− osteoblasts throughout all time points whereas ALP activity was strongly reduced in old α-CGRP−/− osteoblasts after 21 days of osteogenic differentiation compared to age-matched WT. Our data indicate that loss of α-CGRP results in a reduction of bone formation rate in older individuals caused by lower proliferation and reduced activity of osteogenic cells but has no profound effects on bone resorption rate. We suggest that the osteopenic bone phenotype described in aged α-CGRP-deficient mice could be due to an increase of dysfunctional matured osteoblasts during aging resulting in impaired bone formation


The Journal of Bone & Joint Surgery British Volume
Vol. 50-B, Issue 2 | Pages 401 - 408
1 May 1968
Prasad GC Reynolds JJ

1. The use of a protein-free synthetic medium has provided a new technical approach to the study of fracture healing in vitro. 2. The tibiae of fourteen-day embryonic chicks were cut in half in the middle of the shaft, the fragments were placed in apposition and the explants grown in vitro for up to sixteen days. The process of bone repair was studied by means of histology and biochemical estimations. 3. The rate of growth in length of fractured bones was greater in an atmosphere containing 50 per cent of oxygen than in one with 20 per cent oxygen, thus emphasising the importance of an adequate oxygen supply for the regeneration of osteogenic cells. 4. The effect of varying the concentration of glucose in the medium was investigated. Two milligrams of glucose per millilitre was the most favourable for healing; higher levels caused fibroblastic changes in the cartilage cells and inhibited the proliferation of osteogenic cells at the fracture site. 5. Histological examination showed that many of the phenomena that occur in the repair of fractures in vivo can be reproduced in vitro in synthetic medium. Similar results were obtained whether the fracture was made in whole bones or in isolated shafts from which the cartilaginous ends had been removed; the latter are more favourable for biochemical study


The Journal of Bone & Joint Surgery British Volume
Vol. 55-B, Issue 3 | Pages 633 - 639
1 Aug 1973
Uhthoff HK

1. Cell differentiation around screws manufactured by two American and two Swiss companies and inserted into seventy femora in forty-one adult mongrel dogs has been observed over periods varying between two weeks and nine months. 2. This study reveals that, despite their excellent holding power, such screws are not everywhere in firm contact with the surrounding bone at the time of insertion. Indeed, only part of the thread surface facing the head of the screw touches the compact bone, all other surfaces being separated by a space up to 150 µ in thickness. 3. These spaces result both from the surgical technique employed and from the inaccurate measurements of drills, screws and taps. 4. Migrating cells invade these spaces during the first two weeks. In the absence of movement, these cells differentiate into osteogenic cells; movement leads to differentiation into fibroblasts, chondroblasts and osteoclasts, and failure of fixation ensues. In contrast, callus formation by osteogenic cells firmly anchors screws in four to five weeks, well before callus uniting the bone fragments has been established. 5. Extremities should be protected from undue stresses during those first few weeks after osteosynthesis, whatever the technique. 6. This study clearly demonstrates the importance oftesting screws in living bone to ascertain their holding power at all stages of fracture healing