Background and Purpose. The UK's NIHR and Australia's NHMRC have funded two randomised controlled trials (RCTs) to determine if lumbar fusion surgery (LFS) is more effective than best conservative care (BCC) for adults with persistent, severe low back pain (LBP) attributable to lumbar spine degeneration. We aimed to describe clinicians’ decision-making regarding suitability of patient cases for LFS or BCC and level of equipoise to randomise participants in the RCTs. Methods. Two online cross-sectional surveys distributed via UK and Australian professional networks to clinicians involved in LBP care, collected data on clinical discipline, practice setting and preferred care of five patient cases (ranging in age, pain duration, BMI, imaging findings, neurological signs/symptoms). Clinicians were also asked about willingness to randomise each patient case. Results. Of 174 responses (73 UK, 101 Australia), 70 were orthopaedic surgeons, 34 neurosurgeons, 65 allied health professionals (AHPs), 5 others. Most worked in public health services only (92% UK, 45% Australia), or a mix of public/private (36% Australia). Most respondents chose BCC as their first-choice management option for all five cases (81–93% UK, 83–91% Australia). For LFS, UK surgeons preferred TLIF (36.4%), whereas Australian surgeons preferred ALIF (54%). Willingness to randomise cases ranged from 37–60% (UK mean 50.7%), and 47–55% (Australian mean 51.9%); orthopaedic and neuro-surgeons were more willing than AHPs. Conclusion. Whilst BCC was preferred for all five patient cases, just over half of survey respondents in both the UK and Australia were willing to randomise cases to either LFS or BCC, indicating clinical equipoise (collective uncertainty) needed for RCT recruitment. Conflicts of interest. None. Sources of funding. No specific funding obtained for the surveys. DB, SA, AG and NEF have funding from the National Institute for Health Research (NIHR) UK (FORENSIC-UK NIHR134859); NEF, DB and SA have funding from the Australian National Health and Medical Research Council (NHMRC FORENSIC-Australia GA268233). AG has funding from
Spinal deformations are posture dependent. Official data from the Netherlands show that youth are encountering increasing problems with the musculoskeletal system (>40% back pain, and sport injury proneness). Prolonged sloth and slumped sitting postures are causative factors. Dutch youth are “champion sitting” in Europe. The effects of sitting on the development of posture and function of locomotion (stiffness) during growth have only been reported clearly in classic textbooks (in German) of practical anatomy and
Purpose of study. This study aims to establish the micro-structure of the vertebral endplate and its interface with the adjacent bone and disc in fresh, unstained tissue so that the structure can be related to normal and pathological function. Background. The endplate is key in both the mechanics, anchoring and nutrition of the disc. Understanding the detailed structure of the normal and pathological endplate is important for understanding how it achieves its functions. Advancements in imaging technology continually allow for greater understanding of biological structures. The development of two-photon fluorescence (TPF) combined with second harmonic generation (SHG), allows for the imaging of relatively thick, fresh samples without the need for staining. Methods. Bovine tail sections were sampled from the central region of the disc/vertebra interface. Samples were ground to provide a flat surface with a cross section including bone, endplate and disc. Samples were imaged using both TPF and SHG and images analysed using ImageJ. Results. The results detailed the interface between the bone, cartilage and disc. The SHG images show how the collagen fibre arrangement changes between the disc, endplate and subchondral bone. Due to its highly fluorescent nature, the interface between the calcified and non-calcified tissue was clear on TPF images. Conclusion. The application of TPF and SHG allowed us to image the endplate and its interfaces with the bone and disc in fine detail. Characterisation of these structure in healthy tissue is key to understanding how they function and are a foundation for understanding pathological changes. No conflicts of interest. Funding obtained from