Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 473 - 477
1 Apr 2015
Bone MC Dold P Flohr M Preuss R Joyce TJ Aspden RM Holland J Deehan D

Concerns have been raised that deformation of acetabular shells may disrupt the assembly process of modular prostheses. In this study we aimed to examine the effect that the strength of bone has on the amount of deformation of the acetabular shell. The hypothesis was that stronger bone would result in greater deformation. A total of 17 acetabular shells were inserted into the acetabula of eight cadavers, and deformation was measured using an optical measuring system. Cores of bone from the femoral head were taken from each cadaver and compressed using a materials testing machine. The highest peak modulus and yield stress for each cadaver were used to represent the strength of the bone and compared with the values for the deformation and the surgeon’s subjective assessment of the hardness of the bone. The mean deformation of the shell was 129 µm (3 to 340). No correlation was found between deformation and either the maximum peak modulus (r² = 0.011, t = 0.426, p = 0.676) or the yield stress (r² = 0.024, t = 0.614, p = 0.549) of the bone. Although no correlation was found between the strength of the bone and deformation, the values for the deformation observed could be sufficient to disrupt the assembly process of modular acetabular components.

Cite this article: Bone Joint J 2015; 97-B:473–7.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 12 - 12
1 Jun 2017
Holland J Deehan D Manning W Pandorf T
Full Access

Modular un-cemented acetabular components are used in over 50% of UK hip replacements. Mal-seating of hard liners has been reported as a cause of failure which may be a result of errors in assembly, but also could be affected by deformation of the acetabular shell on insertion. Little information exists on in vivo shell deformation. Previous work has confirmed the importance of shell diameter and thickness upon shell behaviour, but mostly using single measurements in models or cold cadavers. Exploration of deformation and its relaxation over the first twenty minutes after implantation of eight generic metal cups at body temperature. Using a previously validated cadaveric model at controlled physiological temperature with standardised surgical technique, we tested the null hypothesis that there was no consistency for time dependent or directional change in deformation for a standard metal shell inserted under controlled conditions into the hip joint. Eight custom made titanium alloy (TiAl6V4) cups were implanted into 4 cadavers (8 hips). Time dependent cup deformation was determined using the previously validated ATOS Triple Scan III (ATOS) optical measurement system. The pattern of change in the shape of the surgically implanted cup was measured at 3 time points after insertion. We found consistency for quantitative and directional deformation of the shells. There was consistency for relaxation of the deformation with time. Immediate mean change in cup radius was 104μm (sd 32, range 67–153) relaxing to mean 96 μm (sd 32, range 63–150) after 10 minutes and mean 92 μm (sd 28, range 66–138) after 20 minutes. This work shows the time dependent deformation and relaxation of acetabular titanium shells and may aid determining the optimal time for insertion of the inner liner at surgery