For hallux valgus correction, distal first metatarsal osteotomy is generally used for minor to moderate deformities, diaphyseal osteotomy for moderate deformities and basal osteotomy or fusion for severe deformities. With the advent of locking plates, there has been renewed interest in
Introduction. Distal femoral and proximal tibial osteotomies are effective procedures to treat degenerative disease of the knee joint. Previously described techniques advocate the use of bone graft to promote healing at the osteotomy site. In this present study a novel technique which utilises the osteogenic potential of the cambial periosteal layer to promote healing “from the outside in” is described. Materials and Methods. A retrospective analysis of a consecutive single-surgeon series of 23 open wedge osteotomies around the knee was performed. The median age of the patients was 37 years (range 17–51 years). The aetiology of the deformities included primary genu valgum (8/23), fracture malunion (4/23), multiple epiphyseal dysplasia (4/23), genu varum (2/23), hypophosphataemic rickets (1/23), primary osteoarthritis (1/23), inflammatory arthropathy (1/23), post-polio syndrome (1/23), and pseudoachondroplasia (1/23). Results. There were two cases lost to follow-up with a median follow-up period 17 months (range 1–32 months). Union was achieved in all cases, with 1/23 requiring revision for early fixation failure for technical reasons. The median time to radiographic union 3.2 months (95% Confidence Interval (CI) 2.5–3.8 95% CI). CT scans demonstrated early periosteal callus, beneath the osteoperiosteal flap, bridging the opening wedge cortex. Clinical union occurred at 4.1 months (95% CI 3.9–4.2 months). Complications included superficial surgical site infection (1/23), deep vein thrombosis (1/23), and symptomatic metalwork requiring removal (7/23). Conclusions. The osteoperiosteal flap technique was a safe and effective technique for
An osteochondral defect greater than 3cm in diameter and 1cm in depth is best managed by an osteochondral allograft. If there is an associated knee deformity, then an osteotomy is performed. In our series of osteochondral allografts for large post-traumatic knee defects realignment osteotomy is performed about 60% of the time in order to off-load the transplant. To correct varus we realign the proximal tibia with an
An osteochondral defect greater than 3cm in diameter and 1cm in depth is best managed by an osteochondral allograft. If there is an associated knee deformity, then an osteotomy was performed. In our series of osteochondral allografts for large post-traumatic knee defects, realignment osteotomy is performed about 60% of the time in order to off load the transplant. To correct varus we realign the proximal tibia with an
The parameters to be considered in the selection of a cartilage repair strategy are: the diameter of the chondral defect; the depth of the bone defect; the location of the defect (weight bearing); alignment. A chondral defect less than 3 cm in diameter can be managed by surface treatment such as microfracture, autologous chondrocyte transplantation, mosaicplasty, or periosteal grafting. An osteochondral defect less than 3 cm in diameter and less than 1 cm in depth can be managed by autologous chondrocyte transplantation, mosaicplasty or periosteal grafting. An osteochondral defect greater than 3 cm in diameter and 1 cm in depth is best managed by an osteochondral allograft. If there is an associated knee deformity, then an osteotomy should also be performed with all of the aforementioned procedures. In our series of osteochondral allografts for large post-traumatic knee defects realignment osteotomy is performed about 60% of the time in order to off load the transplant. To correct varus we realign the proximal tibia with an
Introduction. Lower limb mal-alignment as a result of fracture malunion can result in knee degenerative arthritis or predispose to early arthroplasty failure due to the altered mechanical axis. The choice of corrective osteotomy is often determined by potential complications.
Introduction. Total knee arthroplasty (TKA) can effectively treat end-stage knee osteoarthritis. For cruciate-retaining (CR) TKA, the posterior tibial slope (PTS) of the reconstructed proximal tibia plays a significant role in restoring normal knee kinematics as it directly affects the tension of the posterior cruciate ligament (PCL) [1]. However, conventional cadaveric testing of the impact of PTS on knee kinematics may damage/stretch the PCL, therefore impact the test reproducibility. The purpose of this study was to assess the reproducibility of a novel method for the evaluation of the effects of PTS on knee kinematics. Materials and Methods. Cemented CR TKAs (Logic CR, Exactech, Gainesville, FL, USA) were performed using a computer-assisted surgical guidance system (ExactechGPS®, Blue-Ortho, Grenoble, FR) on six fresh frozen non-arthritic knees (PCL presumably intact). The tibial baseplate was specially designed (Fig. 1) with a mechanism to modify the PTS in-situ. Knee kinematics, including anteroposterior (AP) translation, internal/external (IE) rotation, and hip-knee-ankle angles, were evaluated by performing a passive range of motion from extension up to ∼110° of flexion, three separate times at 5 PTSs: 10°, 7°, 4°, 1°, and then 10° again. The repeatability of the test was investigated by comparing the kinematics between the first and the last 10° tests. Any clinically relevant deviation (1.5° for the hip knee ankle angle, 1.5mm for anterior-posterior translation and 3° for internal-external rotation) would reflect damage to the soft-tissue envelope or the PCL during the evaluation. Potential damage of PCL was investigated by comparing the kinematic parameters from the first and last 10° slope tests at selected flexion angles (Table 1) by paired t-test, with statistical significance defined as p<0.05. Results. The differences in the kinematic parameters between the two sets of acquisitions at 10° of PTS were small, non-clinically relevant (Fig 2), and statistically insignificant (Table 1). For a given knee, the difference was relatively constant over the range of flexion. Knowing that the PCL is not active in extension and early flexion, this finding suggested the differences were mainly caused by the measurement noises. Discussion. The results suggested our test method does not significantly disrupt the soft tissue environment of the knee. Previous evaluations of the effect of the PTS on passive knee kinematics often overlooked the potential disruption/stretching of the PCL or other soft tissue over the course of aggressive manipulation of the PTS. Other soft tissue preserving test methods for the adjustment of PTS, such as anterior
Double level osteotomy (DLO) for severe genu varum is not a common technique. We performed our first computer-assisted double level osteotomy (CADLO) in March 2001 and we published our preliminary results in 2005 and 2007. The rationale to perform this procedure is to avoid oblique joint line in order to have less difficulty in case of revision to a total knee arthroplasty (TKA). The goal of this paper is to present the results of 37 cases operated on between August 2001 and January 2010. The series was composed of 35 patients (two bilateral), nine females and 26 males, aged from 39 to 64 years old (mean age: 50.5 +/− 7.5). We operated on 20 right knees and 17 left ones. The mean BMI was 29.3 +/− 4.3 for a mean height of 1.71 m and a mean weight of 85.8 kg. The functional status was evaluated according to the LYSHÖLM and TEGNER score. The mean score was of 42.4 +/− 8.9 points (22–69). According to modified AHLBÄCK criteria we operated on seven stage 2, 22 stage 3, five stage 4 and two stage 5. We measured HKA (Hip-Knee-Ankle) angle using RAMADIER's protocol and we also measured the femoral mechanical axis (FMA) and the tibial mechanical axis (TMA) to pose the right indication. These measures were respectively: 168° +/− 3.4° (159°–172°), 87.5° +/− 2.1 (83°–91°) for the FMA and 83.7° +/− 2.6° (78°–88°) for the TMA. The inclusion criteria were a patient younger than 65 years old with a severe varus deformity (more than 8° − HKA angle ≤ to 172°) and a FMA at 91° or less. All the osteotomies were navigated using the ORTHOPILOT® device (B-BRAUN-AESCULAP, TUTTLINGEN, GERMANY). The procedure was performed as follows: after inserting the rigid-bodies and calibrating the lower leg, we did first the femoral closing wedge osteotomy (from 4 to 7 mm) which was fixed by a an AO T-Plate, and secondly, after checking the residual varus, the high tibial
Introduction. The management of young patients with painful medial compartment osteoarthritis remains controversial. Opening wedge medial high-tibial osteotomy using a locking plate has shown good results in selected patients. This cohort of patients has high physical demands and previous studies have warned against operating on patients with increased body mass index (BMI). Patients and Methods. Thirty five patients undergoing valgus high tibial osteotomy between Oct 2004 and Feb 2010. Surgical outcome was assessed using Oxford Knee score, pre- and post-operative pain scores, change in employment and patient satisfaction. Results. Mean age at the time of surgery was 41 (22 to 62), mean BMI was 30.9 (21 to 43) and mean Oxford score was 37/48 (16 to 48). Patients rated their overall satisfaction as 7.9/10. Three patients were lost to follow-up, two patients died of unrelated disease. Fifteen (50%) patients had heavy manual jobs and of these 12 (80%) returned to their previous employment post-operatively within 6 months. Seven patients had a BMI > 35 (Mean 39) with a mean weight of 126 Kg (105Kg to 144Kg). These patients had a mean Oxford Score of 42/48 and overall satisfaction of 90%. Pain improved from 8.4/10 pre-op to 1.5/10 post-op (P < 0.0001). None had further procedures. Conclusion.
Purpose. Patients with anterior cruciate ligament (ACL) deficiency and symptomatic medial compartment osteoarthritis (OA) present a challenge in management. These are often younger than typical primary OA patients and aspire to remain athletically active beyond simple ADLs. Combined ACL reconstruction and valgus tibial osteotomy (ACLHTO) is a well documented surgical option for patients deemed wither too young or too active for total knee arthroplasty. Unicompartmental knee arthroplasty (UKA) is an established surgical treatment for symptomatic medial osteoarthritis of the knee refractory to conservative management. A commonly cited contraindications is symptomatic ACL deficiency because of previous reports detailing premature failure through loosening of the tibial component. Improved results and endoscopic ACL reconstructive procedures have led to an enticing concept of combining ACL reconstruction with medial unicompartmental knee arthroplasty (ACLUKR) for those ACL-deficient medial osteoarthritic (OA) knees. We sought to compare the outcomes in 2 cohorts of patients who underwent either ACLHTO or ACLUKR for this clinical problem. Method. Patients presenting with symptomatic bone on bone medial compartment OA and concomitant ACL deficiency (clinical or asymptomatic) were evaluated for surgery after exhausting non operative management. Patients who were under 40 or had plans to return to high impact loading sports and/or who had more moderate OA were offered combined ACL – medial