Advertisement for orthosearch.org.uk
Results 1 - 20 of 51
Results per page:
Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 33
1 Mar 2002
Rochwerger A Curvale G Sbihi A Pinelli P Groulier P
Full Access

Purpose: In reports of arthrodesis of the metatarso-phalangeal joint of the great toe, differences in fusion rates have generally been determined as a function of the osteosynthe-sis material used. We studied the incidence of the type of avivement used in a group of patients fused with the same material. Material and methods: We reviewed at six years 110 patients who underwent metatarso-phalangeal arthrodesis between 1988 and 1999. Two-thirds of the patients (77 patients) had had a simple avivement with osteosynthesis with a proximo-distal axial screw and pin. The same osteosynthesis was also performed in 33 patients who had joint resection between two parallel saw lines. Bone healing was studied on the loaded AP views. Results: Fusion was obtained in 78% of the cases in the first group (simple avivement) and in 97% of the second within two to six months. The difference was significant, favouring parallel saw lines. Discussion: The patients in the two groups had comparable indications for arthrodesis: advanced hallux valgus, osteoarthritis, recurrent hallux valgus after surgical treatment, inflammation. Non-fusion of metatarso-phalangeal arthrodesis of the great toe is usually well tolerated. The difference in the rate of non-fusion could be related to better stability obtained between the two parallel saw lines and to potentially more extensive vascular injury with conventional manual or motorised avivement. Conclusion: If compatible with the anatomic characteristics of the foot, we recommend avivement by joint resection between two parallel saw lines for metatarso-phalangeal arthrodesis


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 237 - 237
1 Mar 2010
Rashid M Harland N Allerton K
Full Access

Purpose of study: Non-fusion stabilisation of degenerative lumbar spine with hinged pedicle screws provides an alternative to spinal fusion in preventing junctional breakdown. Methods and Results: In this prospective cohort study, clinical, functional (Roland-Morris Disability Scale 18 question version) and radiological assessment of patients was performed pre-operatively and postoperatively at predetermined intervals. 36 patients were reviewed with a mean follow-up of 18 months (12 – 28 months). The indications of operation were symptomatic spinal stenosis, discogenic mechanical back pain, post discectomy syndrome and revision spinal surgery. Average age was 57 years (35 – 78 years). Average pre-operative duration of back pain was 6 years (2 – 25 years). 18 patients had stabilisation of single motion segment, 12 had two adjacent motion segments stabilised and six had three segments stabilised. 28 patients had spinal decompression along with stabilisation. On excluding one patient with wound infection average hospital stay was 5 days. There were 78 rods and 192 pedicle screws used with in-situ breakage of two screws and loosening of one screw. Functional score (Roland-Morris Disability Scale 18 question version) improved from 11.33 to 4.44. Visual analogue score (VAS 0 – 100) improved from 79.29 to 13.29. Subjective outcome, measured with descriptive analogue scale, showed marked improvement in 76% of patients. Conclusion: The posterior dynamic stabilisation eliminates the risks and complications of fusion surgery. Although long term results are not available yet but considering early results, this technique can be used safely as a first line surgical treatment for degenerate lumbar spine


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 109 - 116
1 Jan 2016
Chou P Ma H Liu C Wang S Lee OK Chang M Yu W

Methods

In this study of patients who underwent internal fixation without fusion for a burst thoracolumbar or lumbar fracture, we compared the serial changes in the injured disc height (DH), and the fractured vertebral body height (VBH) and kyphotic angle between patients in whom the implants were removed and those in whom they were not. Radiological parameters such as injured DH, fractured VBH and kyphotic angle were measured. Functional outcomes were evaluated using the Greenough low back outcome scale and a VAS scale for pain.

Results

Between June 1996 and May 2012, 69 patients were analysed retrospectively; 47 were included in the implant removal group and 22 in the implant retention group. After a mean follow-up of 66 months (48 to 107), eight patients (36.3%) in the implant retention group had screw breakage. There was no screw breakage in the implant removal group. All radiological and functional outcomes were similar between these two groups. Although solid union of the fractured vertebrae was achieved, the kyphotic angle and the anterior third of the injured DH changed significantly with time (p < 0.05).


Bone & Joint 360
Vol. 13, Issue 5 | Pages 37 - 39
1 Oct 2024

The October 2024 Spine Roundup. 360. looks at: Analysis of risk factors for non-fusion of bone graft in anterior cervical discectomy and fusion: a clinical retrospective study; Does paraspinal muscle mass predict lumbar lordosis before and after decompression for degenerative spinal stenosis?; Return to work after surgery for lumbar disk herniation: a nationwide registry-based study; Can the six-minute walking test assess ambulatory function impairment in patients with cervical spondylotic myelopathy?; Complications after adult deformity surgery: losing more than sleep; Frailty limits how good we can get in adult spine deformity surgery


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 32 - 32
1 Nov 2022
Bernard J Bishop T Herzog J Haleem S Ajayi B Lui D
Full Access

Abstract. Aims. Vertebral body tethering (VBT) is a non-fusion technique to correct scoliosis allowing correction of scoliosis through growth modulation (GM) by tethering the convex side to allow concave unrestricted growth similar to the hemiepiphysiodesis concept. The other modality is anterior scoliosis correction (ASC) where the tether is able to perform most of the correction immediately where limited growth is expected. Methods. A retrospective analysis of 20 patients (M:F=19:1 – 9–17 years) between January 2014 to December 2016 with a mean five-year follow-up (4 to 7). Results. There were ten patients in each group with a total of 23 curves operated upon. VBT-GM mean age −12.5 years (9 to 14), mean Risser of 0.63 (0 to 2) and VBT-ASC was 14.9 years (13 to 17) and mean Risser of 3.66 (3 to 5). Mean preoperative VBT-GM Cobb was 47.4° (40°–58°) compared to VBT-ASC 56.5° (40°–79°). Postoperative VBT-GM Cobb was 20.3° and VBT-ASC was 11.2°. The early postoperative correction rate was 54.3% versus 81% whereas Fulcrum Bending Correction Index (FBCI) was 93.1% vs 146.6%. Latest Cobb angle at mean five years' follow-up was 19.4° (VBT-GM) and 16.5° (VBT-ASC). Overall, 5% of patients required fusion. Conclusion. We show a high success rate (95%) in helping children avoid fusion at five years post-surgery. VBT is a safe technique for scoliosis correction in the skeletally immature patient. This is the first report at five years showing two possible options of VBT depending on the skeletal maturity of the patient: GM and ASC


The current study aims to compare the clinico radiological outcomes between Non-Fusion Anterior Scoliosis (NFASC) Correction and Posterior Spinal Fusion (PSF) for Lenke 5 curves at 2 years follow up. Methods:38 consecutive Lenke 5 AIS patients treated by a single surgeon with NFASC (group A) or PSF (group B) were matched by age, Cobb's angle, and skeletal maturity. Intraoperative blood loss, operative time, LOS, coronal Cobbs, and SRS22 scores at 2 years were compared. Flexibility was assessed by modified Schober's test. Continuous variables were compared using student t-tests and categorical variables were compared using chi-square. The cohort included 19 patients each in group A and B . Group A had M:F distribution of 1:18 while group B had 2:17. The mean age in group A and group B were 14.8±2.9 and 15.3±3.1 years respectively. The mean follow-up of patients in groups A and B were 24.5±1.8 months and 27.4±2.1 months respectively. Mean pre-op thoracolumbar/lumbar (TL/L) cobbs for group A and group B were 55°±7° and 57.5°±8° respectively. At two years follow up, the cobbs for group A and B were 18.2°±3.6° and 17.6°±3.5° respectively (p=0.09). The average operating time for groups A and B were 169±14.2 mins and 219±20.5 mins respectively (p<0.05). The average blood loss of groups A and B were 105.3±15.4 and 325.3±120.4 respectively (p<0.05). The average number of instrumented vertebra between groups A and B were 6.2 and 8.5 respectively (p<0.05). The average LOS for NFASC and PSF was 3.3±0.9 days and 4.3±1.1 days respectively (p<0.05). No statistically significant difference in SRS 22 score was noted between the two groups. No complications were recorded. Our study shows no significant difference in PSF and NFASC in terms of Cobbs correction and SRS scores, but the NFASC group had significantly reduced blood loss, operative time, and fewer instrumented levels. NFASC is an effective alternative technique to fusion to correct and stabilize Lenke 5 AIS curves with preservation of spinal motion


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 408 - 408
1 Sep 2005
Carey R
Full Access

Introduction The purpose of this paper is to evaluate Non-Fusion Stabilisation in a group of specific mechanical pathologies including degenerative spondylolisthesis, where conjecture remains as to the place and appropriateness of Spinal Fusion. Patients were provided with verbal information, a model, and written information including not only information from the company itself but a written information sheet and a copy of the article by Senegas (Eur Spine J 2002) on the Wallis Implant® (Spine Next, Bordeaux, France). Methods 72 patients had non-fusion stabilising procedures using the Wallis PEEK and Polyester implant over a period from May 2003 until the 28. th. February 2005, and were prospectively followed for this review. Problems with the device, specific and non-specific postoperative complications, length of stay post-operatively and patient satisfaction were assessed. Results 45 of the 72 patients had a follow-up of six months or more, and 21 of those 45 had a follow-up of greater than twelve months. There were no device failures and minimal complications. Assessment by VAS and Oswestry Disability Questionnaire showed improvement across all groups. Pre-op ODQ (mean 49.35, SD 16.55) decreased at 6 months (mean 26.00, SD 25.85) and at 12 months (mean 24.18, SD 19.50). This was significant (p< .001). Pre-op VAS (mean 69.54, SD 19.80) decreased at 6 months (mean 26.00, SD 25.85) and at 12 months (mean 28.50, SD 22.00). This was significant (p< .001). Discussion In this study it seems that non-fusion stabilisation may be a simple and relatively uncomplicated alternative to fusion surgery in the groups discussed. Whilst one long term study has shown excellent results, the patient groups were different and the implant itself was metallic rather than PEEK.¹ Anticipated longer-term problems with non-fusion stabilisation are possible loss of stabilisation, and perhaps increasing kyphosis. Obviously longer follow-up is required to assess long-term durability and problems. Non-Fusion Stabilisation seems worthy of consideration in some patient groups presented


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_1 | Pages 9 - 9
1 Jan 2022
Haleem S Ahmed A Ganesan S McGillion S Fowler J
Full Access

Abstract. Objective. Flexible stabilisation has been utilised to maintain spinal mobility in patients with early-stage lumbar spinal stenosis (LSS). Previous literature has not yet established any non-fusion solution as a viable treatment option for patients with severe posterior degeneration of the lumbar spine. This feasibility study evaluates the mean five-year outcomes of patients treated with the TOPS (Total Posterior Spine System) facet replacement system in the surgical management of lumbar spinal stenosis and degenerative spondylolisthesis. Methods. Ten patients (2 males, 8 females, mean age 59.6) were enrolled into a non-randomised prospective clinical study. Patients were evaluated with standing AP, lateral, flexion and extension radiographs and MRI scans, back and leg pain visual analog scale (VAS) scores, Oswestry Disability Index (ODI), Zurich Claudication Questionnaire (ZCQ) and the SF-36 questionnaires, preoperatively, 6 months, one year, two years and latest follow-up at a mean of five years postoperatively (range 55–74 months). Flexion and extension standing lumbar spine radiographs were obtained at 2 years to assess range of motion (ROM) at the stabilised segment. Results. The clinical outcome scores for the cohort improved significantly across all scoring systems. Radiographs at 2 years did not reveal any loss of position or loosening of metal work. There were two incidental durotomies and no failures at 5 years with no patient requiring revision surgery. Conclusions. The TOPS implant maintains clinical improvement and motion in the surgical management of LSS and spondylolisthesis, indicating it can be considered an option for these indications


Bone & Joint Open
Vol. 3, Issue 2 | Pages 123 - 129
1 Feb 2022
Bernard J Bishop T Herzog J Haleem S Lupu C Ajayi B Lui DF

Aims. Vertebral body tethering (VBT) is a non-fusion technique to correct scoliosis. It allows correction of scoliosis through growth modulation (GM) by tethering the convex side to allow concave unrestricted growth similar to the hemiepiphysiodesis concept. The other modality is anterior scoliosis correction (ASC) where the tether is able to perform most of the correction immediately where limited growth is expected. Methods. We conducted a retrospective analysis of clinical and radiological data of 20 patients aged between 9 and 17 years old, (with a 19 female: 1 male ratio) between January 2014 to December 2016 with a mean five-year follow-up (4 to 7). Results. There were ten patients in each group with a total of 23 curves operated on. VBT-GM mean age was 12.5 years (9 to 14) with a mean Risser classification of 0.63 (0 to 2) and VBT-ASC was 14.9 years (13 to 17) with a mean Risser classification of 3.66 (3 to 5). Mean preoperative VBT-GM Cobb was 47.4° (40° to 58°) with a Fulcrum unbend of 17.4 (1° to 41°), compared to VBT-ASC 56.5° (40° to 79°) with 30.6 (2° to 69°)unbend. Postoperative VBT-GM was 20.3° and VBT-ASC Cobb angle was 11.2°. The early postoperative correction rate was 54.3% versus 81% whereas Fulcrum Bending Correction Index (FBCI) was 93.1% vs 146.6%. The last Cobb angle on radiograph at mean five years’ follow-up was 19.4° (VBT-GM) and 16.5° (VBT-ASC). Patients with open triradiate cartilage (TRC) had three over-corrections. Overall, 5% of patients required fusion. This one patient alone had a over-correction, a second-stage tether release, and final conversion to fusion. Conclusion. We show a high success rate (95%) in helping children avoid fusion at five years post-surgery. VBT is a safe technique for correction of scoliosis in the skeletally immature patient. This is the first report at five years that shows two methods of VBT can be employed depending on the skeletal maturity of the patient: GM and ASC. Cite this article: Bone Jt Open 2022;3(2):123–129


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 16 - 16
1 Sep 2021
Bernard J Herzog J Bishop T Fragkakis A Fenner C Ajayi B Lui DF
Full Access

Introduction. Vertebral body tethering (VBT) is a non-fusion technique to correct scoliosis. It allows correction of scoliosis through Growth Modulation (GM) by tethering the convex side to allow concave unrestricted growth similar to the hemi-epiphysiodesis concept. The other modality is Anterior Scoliosis Correction (ASC) where the tether is able to perform most of the correction immediately where limited growth is expected. Methods. Retrospective analysis of clinical and radiographic data of 20 patients between 2014 to 2016 with a mean 5 year follow (range 4–6). Results. There were 10 patients in each group with a total of 23 curves operated on. VBT-GM mean age was 12.5y with mean Risser 0.63 and VBT-ASC was14.9y with a Risser of 3.66. Mean preop VBT-GM Cobb was 46° with a Fulcrum unbend of 13.6° compared to VBT-ASC 56.9° with 32.2° unbend. Postop VBT-GM was 21° and VBT-ASC Cobb was 10.8°. The early postop Correction Rate was 54.3% vs 81% whereas FBCI was 77.1% vs 186.6%. The last XR at mean 5y was 22.2° (VBT-GM) and 16.9° (VBT-ASC) 95% avoided fusion. Open TRC group had 3 over corrections. 1 patient alone had overcorrection, unplanned second stage and conversion to fusion. Discussion and Conclusion. We show a high success rate (95%) in helping children avoid fusion. Vertebral body tethering is a safe technique for correction of scoliosis in the skeletally immature patient. This is the first report at 5 years that shows two modalities of VBT can be employed depending on the skeletal maturity of the patient: Growth Modulation and Anterior Scoliosis Correction


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1372 - 1376
1 Oct 2018
Bao H Liu Z Bao M Zhu Z Yan P Liu S Feng Z Qian B Qiu Y

Aims. The aim of this study was to investigate the impact of maturity status at the time of surgery on final spinal height in patients with an adolescent idiopathic scoliosis (AIS) using the spine-pelvic index (SPI). The SPI is a self-control ratio that is independent of age and maturity status. Patients and Methods. The study recruited 152 female patients with a Lenke 1 AIS. The additional inclusion criteria were a thoracic Cobb angle between 45° and 70°, Risser 0 to 1 or 3 to 4 at the time of surgery, and follow-up until 18 years of age or Risser stage 5. The patients were stratified into four groups: Risser 0 to 1 and selective fusion surgery (Group 1), Risser 0 to 1 and non-selective fusion (Group 2), Risser 3 to 4 and selective fusion surgery (Group 3), and Risser 3 to 4 and non-selective fusion (Group 4). The height of spine at follow-up (HOS. f. ) and height of pelvis at follow-up (HOP. f. ) were measured and the predicted HOS (pHOS) was calculated as 2.22 (SPI) × HOP. f. One-way analysis of variance (ANOVA) was performed for statistical analysis. Results. Of the 152 patients, there were 32 patients in Group 1, 27 patients in Group 2, 48 patients in Group 3, and 45 patients in Group 4. Significantly greater HOS. f. was observed in Group 3 compared with Group 1 (p = 0.03) and in Group 4 compared with Group 2 (p = 0.02), with similar HOP. f. (p = 0.75 and p = 0.83, respectively), suggesting that patients who undergo surgery at Risser grade of 0 to 1 have a shorter spinal height at follow-up than those who have surgery at Risser 4 to 5. HOS. f. was similar to pHOS in both Group 1 and Group 2 (p = 0.62 and p = 0.45, respectively), indicating that undergoing surgery at Risser 0 to 1 does not necessarily affect final spinal height. Conclusion. This study shows that fusion surgery at Risser 0 may result in growth restriction unlike fusion surgery at Risser 3 to 4. Despite such growth restriction, AIS patients could reach their predicted or ‘normal’ spinal height after surgery regardless of baseline maturity status due to the longer baseline spinal length in AIS patients and the remaining growth potential at the non-fusion levels. Cite this article: Bone Joint J 2018;100-B:1372–6


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 38 - 38
1 Sep 2019
Sikkens D Broekema A Soer R Reneman M Groen R Kuijlen J
Full Access

Introduction. Degeneration of the cervical spine can lead to neurological symptoms that require surgical intervention. Often, an anterior cervical discectomy (ACD) with fusion is performed with interposition of a cage. However, a cage substantially increases health care costs. The polymer polymethylmethacrylate (PMMA) is an alternative to cages, associated with lower costs. The reported high-occurrence of non-fusion with PMMA is often seen as a drawback, but evidence for a correlation between radiological fusion and clinical outcome is absent. To investigate if the lower rate of fusion with PMMA has negative effects on long-term clinical outcome, we assessed the clinical results of ACD with PMMA as a intervertebral spacer with a 5–10 year follow-up. Methods. A retrospective cohort study among all patients who underwent a mono-level ACD with PMMA for degenerative cervical disease, between 2007–2012, was performed. Patients filled out an online questionnaire, developed to assess clinical long-term outcome, complications and re-operation rates. The primary outcome measure was the Neck Disability Index (NDI), secondary outcome measures were re-operation and complication rates. Results. Of 196 eligible patients, 90 patients were assessed (response rate 53%). The average NDI score at follow-up (mean 7.5 years) was 19.0 points ± 18.0 points. Complications occurred in 10% and re-operation in 8.8%. Conclusion. This study provides evidence of good long-term clinical results of ACD with PMMA, as the results were similar with long-term outcomes of ACD with a cage as spacer. Therefore, the results of this study may suggest that the use of PMMA is an lower-cost alternative. No conflicts of interests. No funding obtained


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 567 - 567
1 Oct 2010
Martin A Bale R Fischler S Haid C Von Strempel A
Full Access

Introduction: With non-fusion stabilization surgery technique, the demands on the pedicle screw system have increased. The screw implants require a high press fit for optimum bone integration and a high pullout strength to guarantee primary stability. We compared the cylindrical screw design from a pedicle screw system with the conical design in regard to the insertional torque and pullout strength. Methods: Three human cadaver specimens L1 – L5 (15 vertebrae, 30 pedicles) were fitted with pedicle screws on both sides. The pedicles were randomized to one of two screw types: 1) cylindrical pedicle screw, 2) conical. A computer tomographic bone density measurement was performed beforehand. The insertional torque was measured while inserting the pedicle screws. The correct position of the screw was verified using computer tomography. In order to test the pullout strength, the preparations were divided up into individual vertebrae and fixed. Results: The mean peak insertional torque for the conical screws was significantly higher than that for the cylindrical screws. The pullout strength showed no significant difference between the two types of pedicle screws. With both the conical and the cylindrical pedicle screws, the pullout strength and insertional torque significantly decreased with decreasing bone density in the preparations. Conclusions: Statements in the literature about the effect on insertional torque and pullout strength of using a conical or cylindrical pedicle screw design vary. The two screw designs in our study only differed in regard to their internal diameter. The significantly higher insertional torque values found for the conical screws could describe the improved screw press-fit behavior. The pullout strength was not significantly affected by the conical design. No correlation was found between the insertional torque and pullout strength. In order to optimize the adjustment of insertional torque and pullout strength, we recommend the conical pedicle screw design for non-fusion surgical techniques for the surgical treatment of degenerative diseases of the lumbar spine


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 149 - 149
1 Mar 2006
Fokter S Yerby S Brieske W Vengust V Kotnik M Sajovic M
Full Access

Surgical decompression is the recommended treatment for patients with moderate to severe degenerative lumbar spinal stenosis (DLSS). Although complication risk has been shown to be higher with concomitant fusion, the success rate is not necessarily superior. This study analyzed the success rates of 58 DLSS patients treated with decompressive surgery. Twenty patients received concomitant instrumented fusion. Outcomes were measured with the Swiss Spinal Stenosis Questionnaire (SSSQ) completed pre-operatively and at least 12 months post-operatively (range 12 to 54 months). Overall, 63.8% of the patients had significant clinical improvement in Symptom Severity, 55.2% had significant clinical improvement in Physical Function, and 58.6% of the patients were at least somewhat satisfied; 43.1% (25/58) of the patients met all three criteria and were considered to be clinically successful. There were no statistically significant differences between the clinical success rates of the non-fusion and fusion groups, but the change in mean change of the Symptom Severity score for the fusion group was significantly greater than that of the non-fusion group. Also, patients with more severe pre-operative symptoms and more physical function restrictions had better success results than those patients with more mild symptoms and less restrictive physical function. The results of this study demonstrate that decompressive surgery with concomitant fusion does not impose a greater risk than decompressive surgery alone and the clinical results of the added fusion are somewhat superior to decompressive surgery alone


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 32 - 32
1 Apr 2018
Karakaşlı A Ertem F Kızmazoğlu C Havıtçıoğlu H
Full Access

Background. For dorsal stabilization, rigid implant systems are be coming increasingly complemented by numerous dynamic systems based on pedicle screws. Numerous posterior non-fusion systems have been developed within the past decade to resolve the disadvantages of rigid instrumentations and preserve spinal motion. For dorsal stabilization, rigid implant systems are becoming increasingly complemented by numerous dynamic systems based on pedicle screws and varying direction. However, it is still unclear which direction is most suitable to accomplish a physiologically related dynamic stabilization, and which loadings conditions are induced to the implants. Purpose. The aim of this study was to investigate the effect of a new telescopic dynamic stabilization device. Evaluation of the effects on the dynamic stabilization of the spine in terms of segmental range of motion (RoM), and implant loadings. Methods. Six sheep lumbar spine motion segments (L3–4) were loaded in a spine tester with pure moments of 7.5 Nm in flexion/extension lateral bending right/left. Specimens were tested in groups of intact (1), facetectomy with rigid fixation (2), facetectomy with the new telescopic mobil stabilization device (3). The kinematic response was recorded using an opto electric tracking system and reported in terms of intervertebral range of motion (ROM) and spinal stability. Results. Mobile rod's kinematical behavior is more closer to intact group than rigid fixation. Flexion: 3.6 mm, 3.93 mm and 1.81 mm; extension 3.79 mm, 3.84 mm and 2.27 mm; lateral bending right 3.64 mm, 4.39 mm and 2.47 mm; lateral bendig left 4.6 mm and 5.79 mm and 2.58 mm, respectively. Conclusion. Those involved in the design and evaluation of telescopic mobil rod devices may benefit from evaluation of inter pedicular kinematics. Evaluating inter vertebral motion from the perspective of the pedicle screw allows for a direct and intuitive translation between in vitro test results and design parameters. Furthermore, telescopic mobile rod knematics were similar to intact spine


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 92 - 92
1 May 2017
Barrios C Llombart R Maruenda B Alonso J Burgos J Lloris J
Full Access

Background. Using flexible tethering techniques, porcine models of scoliosis have been previously described. These scoliotic curves showed vertebral wedging but very limited axial rotation. In some of these techniques, a persistent scoliotic deformity was found after tether release. The possibility to create severe progressive true scoliosis in a big animal model would be very useful for research purposes, including corrective therapies. Methods. The experimental ethics committee of the main institution provide the approval to conduct the study. Experimental study using a growing porcine model. Unilateral spinal bent rigid tether anchored to two ipsilateral pedicle screws was used to induce scoliosis on eight pigs. Five spinal segments were left between the instrumented pedicles. The spinal tether was removed after 8 weeks. Ten weeks later the animals were sacrificed. Conventional radiographs and 3D CT-scans of the specimens were taken to evaluate changes in the coronal and sagittal alignment of the thoracic spine. Fine-cut CT-scans were used to evaluate vertebral and disc wedging and axial rotation. Results. After 8 weeks of rigid tethering, the mean Cobb angle of the curves was 24.3 ± 13.8 degrees. Once the interpedicular tether was removed, the scoliotic curves progressed in all animals until sacrifice. During these 10 weeks without spinal tethering the mean Cobb angle reached 50.1 ± 27.1 degrees. The sagittal alignment of the thoracic spine showed loss of physiologic kyphosis. Axial rotation ranges from 10 to 35 degrees. There was no auto-correction of the curve in any animal. A further pathologic analysis of the vertebral segments revealed that animals with greater progression had more damage of the neurocentral cartilages and epiphyseal plates at the sites of pedicle screw insertion. Interestingly, in these animals with more severe curves, compensatory curves were found proximal and distal to the tethered segments. Conclusions. Temporary interpedicular tethering at the thoracic spine induces severe scoliotic curves in pigs, with significant wedging and rotation of the vertebral bodies. As detailed by CT morphometric analysis, release of the spinal tether systematically results in progression of the deformity with development of compensatory curves outside the tethered segment. The clinical relevance of this work is that this tether release model will be very useful to evaluate both fusion and non-fusion corrective technologies in future research. Level of Evidence. Not apply for experimental studies


Bone & Joint Open
Vol. 4, Issue 8 | Pages 573 - 579
8 Aug 2023
Beresford-Cleary NJA Silman A Thakar C Gardner A Harding I Cooper C Cook J Rothenfluh DA

Aims

Symptomatic spinal stenosis is a very common problem, and decompression surgery has been shown to be superior to nonoperative treatment in selected patient groups. However, performing an instrumented fusion in addition to decompression may avoid revision and improve outcomes. The aim of the SpInOuT feasibility study was to establish whether a definitive randomized controlled trial (RCT) that accounted for the spectrum of pathology contributing to spinal stenosis, including pelvic incidence-lumbar lordosis (PI-LL) mismatch and mobile spondylolisthesis, could be conducted.

Methods

As part of the SpInOuT-F study, a pilot randomized trial was carried out across five NHS hospitals. Patients were randomized to either spinal decompression alone or spinal decompression plus instrumented fusion. Patient-reported outcome measures were collected at baseline and three months. The intended sample size was 60 patients.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 886 - 893
15 Oct 2024
Zhang C Li Y Wang G Sun J

Aims

A variety of surgical methods and strategies have been demonstrated for Andersson lesion (AL) therapy. In 2011, we proposed and identified the feasibility of stabilizing the spine without curettaging the vertebral or discovertebral lesion to cure non-kyphotic AL. Additionally, due to the excellent reunion ability of ankylosing spondylitis, we further came up with minimally invasive spinal surgery (MIS) to avoid the need for both bone graft and lesion curettage in AL surgery. However, there is a paucity of research into the comparison between open spinal fusion (OSF) and early MIS in the treatment of AL. The purpose of this study was to investigate and compare the clinical outcomes and radiological evaluation of our early MIS approach and OSF for AL.

Methods

A total of 39 patients diagnosed with AL who underwent surgery from January 2004 to December 2022 were retrospectively screened for eligibility. Patients with AL were divided into an MIS group and an OSF group. The primary outcomes were union of the lesion on radiograph and CT, as well as the visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores immediately after surgery, and at the follow-up (mean 29 months (standard error (SE) 9)). The secondary outcomes were total blood loss during surgery, operating time, and improvement in the radiological parameters: global and local kyphosis, sagittal vertical axis, sagittal alignment, and chin-brow vertical angle immediately after surgery and at the follow-up.


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 172 - 179
1 Feb 2023
Shimizu T Kato S Demura S Shinmura K Yokogawa N Kurokawa Y Yoshioka K Murakami H Kawahara N Tsuchiya H

Aims

The aim of this study was to investigate the incidence and characteristics of instrumentation failure (IF) after total en bloc spondylectomy (TES), and to analyze risk factors for IF.

Methods

The medical records from 136 patients (65 male, 71 female) with a mean age of 52.7 years (14 to 80) who underwent TES were retrospectively reviewed. The mean follow-up period was 101 months (36 to 232). Analyzed factors included incidence of IF, age, sex, BMI, history of chemotherapy or radiotherapy, tumour histology (primary or metastasis; benign or malignant), surgical approach (posterior or combined), tumour location (thoracic or lumbar; junctional or non-junctional), number of resected vertebrae (single or multilevel), anterior resection line (disc-to-disc or intravertebra), type of bone graft (autograft or frozen autograft), cage subsidence (CS), and local alignment (LA). A survival analysis of the instrumentation was performed, and relationships between IF and other factors were investigated using the Cox regression model.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 145 - 145
1 Apr 2012
Mahir S Marsh G Lakkireddi P
Full Access

The purpose of this retrospective study, is to demonstrate the survivorship and clinical effectiveness of the Wallis implant, against low back pain and functional disability in patients with degenerative lumbar spine disease. The Wallis Interspinous implant, was developed as a minimally invasive and anatomically conserving procedure, without recourse to rigid fusion procedures. The initial finite element analysis and cadaver biomechanical studies showed that the Wallis ligament improves stability in the degenerate lumbar motion segment. Unloading the disc and facet joints reduces intradiscal pressures at same and adjacent levels allowing for the potential of the disc to repair itself. A total of 157 patients who had wallis ligament insertion between 2003 and 2009 were reviewed, with a mean age of 54 and were followed for 48 months on average. Patients were assessed pre-operatively and post-operatively every 6 months by VAS pain score, Oswestry Disability Index and SF-36. 90% of patients improved, to show a minimal clinical difference, compared to the pre-operative evaluation. There is overall 75-80% good clinical outcome. Low infection rate of 1.1%. Two cases of prolapsed discs at the same level requiring further discectomy, 7 required fusion. No fractures or expulsions. The Wallis implant represents a safe non-fusion stabilisation device in the treatment of degenerative lumbar spine disease with canal stenosis. There is less soft tissue damage, quick rehabilitation, less morbidity and associated low complication rate