Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 125 - 125
1 Nov 2021
Sánchez G Cina A Giorgi P Schiro G Gueorguiev B Alini M Varga P Galbusera F Gallazzi E
Full Access

Introduction and Objective. Up to 30% of thoracolumbar (TL) fractures are missed in the emergency room. Failure to identify these fractures can result in neurological injuries up to 51% of the casesthis article aimed to clarify the incidence and risk factors of traumatic fractures in China. The China National Fracture Study (CNFS. Obtaining sagittal and anteroposterior radiographs of the TL spine are the first diagnostic step when suspecting a traumatic injury. In most cases, CT and/or MRI are needed to confirm the diagnosis. These are time and resource consuming. Thus, reliably detecting vertebral fractures in simple radiographic projections would have a significant impact. We aim to develop and validate a deep learning tool capable of detecting TL fractures on lateral radiographs of the spine. The clinical implementation of this tool is anticipated to reduce the rate of missed vertebral fractures in emergency rooms. Materials and Methods. We collected sagittal radiographs, CT and MRI scans of the TL spine of 362 patients exhibiting traumatic vertebral fractures. Cases were excluded when CT and/or MRI where not available. The reference standard was set by an expert group of three spine surgeons who conjointly annotated (fracture/no-fracture and AO Classification) the sagittal radiographs of 171 cases. CT and/or MRI were used confirm the presence and type of the fracture in all cases. 302 cropped vertebral images were labelled “fracture” and 328 “no fracture”. After augmentation, this dataset was then used to train, validate, and test deep learning classifiers based on the ResNet18 and VGG16 architectures. To ensure that the model's prediction was based on the correct identification of the fracture zone, an Activation Map analysis was conducted. Results. Vertebras T12 to L2 were the most frequently involved, accounting for 48% of the fractures. Accuracies of 88% and 84% were obtained with ResNet18 and VGG16 respectively. The sensitivity was 89% with both architectures but ResNet18 had a significantly higher specificity (88%) compared to VGG16 (79%). The fracture zone used was precisely identified in 81% of the heatmaps. Conclusions. Our AI model can accurately identify anomalies suggestive of TL vertebral fractures in sagittal radiographs precisely identifying the fracture zone within the vertebral body


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_17 | Pages 14 - 14
1 Apr 2013
Childs J Khatri M
Full Access

Aim. The aim of this study is to evaluate the causes of litigation in spinal surgery and to identify preventable causes. Methods. Retrospective analysis of all claim data made available under Freedom of information act from NHS Litigation Authority between years 2000 to 2010. Results. A total of 581 (331 Orthopaedics and 250 Neurosurgery) claims were filed in England and Wales, of these 543 cases were settled while 38 cases were pending. 371 (69%) of 543 settled resulted in payout but 172 (31%) claims were successfully defended by the NHSLA. Average payout was £63,573 total £ 36935933 maximum payout of £ 1800000). This figure rose to average of £ 95125, (Total £553627720) when defence and claimant costs were included. The allegations categories were 123 failure or delay in diagnosis, 108 intra operative problems, 90 failure or delay in treatment, 45 suboptimal consent and in 40 failure to recognise complications. The successful litigations were result of neurological injury in 143, un necessary operation in 37, avoidable pain in 29, death 15 and Misc 31. Conclusion. Litigation can in part be attributed to the “no win no fee” culture; steps that can be taken to reduce the number of successful claims. Failure or delay in diagnosis and Intra operative problems can partially be attributed to lack of resources and or expertise emphasising the need for spinal surgery to be concentrated in specialist centres. Documented informed consent can also potentially decrease litigation. No conflicts of interest. No funding obtained. This abstract has not been previously published in whole or substantial part nor has it been presented previously at a national meeting


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 297 - 297
1 Jul 2014
Barrios C Montes E Burgos J de Blas G Antón-Rodrigálvarez M Hevia E Correa C
Full Access

Summary Statement. The spinal cord showed marked sensibility to acute compression causing complete and irreversible injury. On the contrary, the spinal cord has more ability for adaptation to slow progressive compression mechanisms having the possibility of neural recovery after compression release. Introduction. The aim of this experimental study was to establish, by means of neurophysiologic monitoring, the degree of compression needed to cause neurologic injury to the spinal cord, and analyze whether these limits are different making fast or slow compression. Material and Methods. Spinal cord was exposed from T7 to T11 in 5 domestic pigs with a mean weight of 35 kg. The T8 and T9 spinal roots were also exposed. A pair of sticks, attached to a precise compression device, was set up to both sides of the spinal cord between T8 and T9 roots. Sequentially, the sticks were approximated 0.5 mm every 2 minutes causing progressive spinal cord compression. An acute compression of the spinal cord was also reproduced by a 2.5 mm displacement of the sticks. Cord to cord motor evoked potentials were obtained with two epidural catheters, stimulating proximal to T6 and recording below the compression level, distal to T10, for each sequential approach of the sticks. Results. The mean width of the dural sac was 7.1 mm. For progressive compression, increasing latency and decreasing amplitude of the evoked potentials were observed after a mean displacement of the sticks of 3.2 ± 0.9 mm, the evoked potential finally disappearing after a mean displacement of 4.6 ± 1.2 mm. The potential returned 16.8 ± 3.2 minutes after the compression was stopped in every case. The evoked potentials immediately disappeared after an acute compression 2.5 ± 0.3 mm, without any sign of recovering after 30 minutes. Conclusion. The proposed experimental model replicates the mechanism of a spinal cord injury caused by medially displaced screws into the spinal canal, causing therefore lateral compression to the spinal cord. The spinal cord showed marked sensibility to acute compression, which caused complete and irreversible injury. On the contrary, the spinal cord has more ability for adaptation to progressive and slow compression mechanisms. From a clinical point of view, it seems mandatory to avoid maneuvers of rapid mobilization or acute, even minimal, contusions of the thoracic cord


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 3 | Pages 406 - 410
1 Mar 2006
Quinlan JF Watson RWG Kelly G Kelly PM O’Byrne JM Fitzpatrick JM

Injuries to the spinal cord may be associated with increased healing of fractures. This can be of benefit, but excessive bone growth can also cause considerable adverse effects.

We evaluated two groups of patients with fractures of the spinal column, those with neurological compromise (n = 10) and those without (n = 15), and also a control group with an isolated fracture of a long bone (n = 12). The level of transforming growth factor-beta (TGF-β), was measured at five time points after injury (days 1, 5, 10, 42 and 84).

The peak level of 142.79 ng/ml was found at day 84 in the neurology group (p < 0.001 vs other time points). The other groups peaked at day 42 and had a decrease at day 84 after injury (p ≤ 0.001).

Our findings suggest that TGF-β may have a role in the increased bone turnover and attendant complications seen in patients with acute injuries to the spinal cord.