Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 920 - 927
1 Aug 2023
Stanley AL Jones TJ Dasic D Kakarla S Kolli S Shanbhag S McCarthy MJH

Aims. Traumatic central cord syndrome (CCS) typically follows a hyperextension injury and results in motor impairment affecting the upper limbs more than the lower, with occasional sensory impairment and urinary retention. Current evidence on mortality and long-term outcomes is limited. The primary aim of this study was to assess the five-year mortality of CCS, and to determine any difference in mortality between management groups or age. Methods. Patients aged ≥ 18 years with a traumatic CCS between January 2012 and December 2017 in Wales were identified. Patient demographics and data about injury, management, and outcome were collected. Statistical analysis was performed to assess mortality and between-group differences. Results. A total of 65 patients were identified (66.2% male (n = 43), mean age 63.9 years (SD 15.9)). At a minimum of five years’ follow-up, 32.3% of CCS patients (n = 21) had died, of whom six (9.2%) had died within 31 days of their injury. Overall, 69.2% of patients (n = 45) had been managed conservatively. There was no significant difference in age between conservatively and surgically managed patients (p = 0.062). Kaplan-Meier analysis revealed no significant difference in mortality between patients managed conservatively and those managed surgically (p = 0.819). However, there was a significant difference in mortality between the different age groups (< 50 years vs 50 to 70 years vs > 70 years; p = 0.001). At five years’ follow-up, 55.6% of the patient group aged > 70 years at time of injury had died (n = 15). Respiratory failure was the most common cause of death (n = 9; 42.9%). Conclusion. Almost one-third of patients with a traumatic CCS in Wales had died within five years of their injury. The type of management did not significantly affect mortality but their age at the time of injury did. Further work to assess the long-term functional outcomes of surviving patients is needed to generate more reliable prognostic information. Cite this article: Bone Joint J 2023;105-B(8):920–927


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_2 | Pages 17 - 17
1 Feb 2015
Hemming R Sheeran L van Deursen R Sparkes V
Full Access

Background and Purpose of Study:. Differences in regional lumbar angles in sitting have been observed between subgroups of NSCLBP patients exhibiting motor control impairments (MCI) (O'Sullivan, 2005; Dankaerts et al, 2006). However, differences in standing posture and other spinal regions are unknown. This study aimed to compare regional spinal angles in healthy and MCI subgroups in sitting and standing. Methods:. An observational, cross-sectional study investigated spinal kinematics of 28 Flexion Pattern (FP), 23 Active Extension Pattern (AEP) (O'Sullivan, 2005) and 28 healthy controls using 3D motion analysis (Vicon) during usual sitting and standing. Mean sagittal angle for Total Lumbar (TotLx), Total Thoracic (TotTx), Upper Thoracic (UTx), Lower Thoracic (LTx), Upper Lumbar (ULx) and Lower Lumbar (LLx) regions between groups were compared using one-way ANOVA. Results:. No differences in total thoracic and lumbar regions were observed, except TotLx in sitting between FP and AEP (Mean Difference (MD)=15.81°, p=0.003). Significant differences were observed in ULx and LTx for standing and sitting between FP and AEP (ULx Standing MD=9.89°, p=0.003; ULx Sitting MD=12.32°, p=0.000; LTx Standing MD=7.57°, p=0.05; LTx Sitting MD=11.72°, p=0.001) with AEP demonstrating greater extension in these regions. FP exhibited greater flexion compared to controls in ULx and LTx, except LTx in standing (ULx Standing MD=7.69°, p=0.018; ULx Sitting MD=6.96°, p=0.014; LTx Sitting MD=11.28°, p=0.001). No differences between AEP and controls were observed in sitting or standing. Conclusion:. Observing subdivided regional spinal angles is key to identifying MCI sub-group differences, with ULx and LTx able to discriminate between FP and AEP, and FP and healthy controls. This abstract has not been previously published in whole or substantial part nor has it been presented previously at a national meeting. Conflicts of interest: No conflicts of interest. Sources of funding: Arthritis Research UK / Presidents Research Scholarship, Cardiff University


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 503 - 506
1 Apr 2011
Rust CL Ching AC Hart RA

There are many causes of paraspinal muscle weakness which give rise to the dropped-head syndrome. In the upper cervical spine the central portion of the spinal cord innervates the cervical paraspinal muscles. Dropped-head syndrome resulting from injury to the central spinal cord at this level has not previously been described. We report two patients who were treated acutely for this condition. Both presented with weakness in the upper limbs and paraspinal cervical musculature after a fracture of C2. Despite improvement in the strength of the upper limbs, the paraspinal muscle weakness persisted in both patients. One ultimately underwent cervicothoracic fusion to treat her dropped-head syndrome.

While the cause of the dropped-head syndrome cannot be definitively ascribed to the injuries to the spinal cord, this pattern is consistent with the known patho-anatomical mechanisms of both injury to the central spinal cord and dropped-head syndrome.