Advertisement for orthosearch.org.uk
Results 1 - 20 of 373
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 7 - 7
11 Apr 2023
Hart M Selig M Azizi S Walz K Lauer J Rolauffs B
Full Access

While cell morphology has been recognized as a fundamental regulator of cell behavior, few studies have measured the complex cell morphological changes of chondrocytes using quantitative cell morphometry descriptors in relation to inflammation and phenotypic outcome. Acute vs. persistent exposure to IL-1β and how IL-1β modulated dynamic changes in cell morphology in relation to the phenotype, donor and OA grade in healthy and osteoarthritis (OA) chondrocytes was investigated. A panel of quantitative cell morphometry descriptors was measured using an automated high-throughput method. Absolute quantification of gene expression was measured by ddPCR followed by correlation analyses. In OA chondrocytes, chronic IL-1β significantly decreased COL2A1, SOX9, and ACAN, increased IL-6 and IL-8 levels and caused chondrocytes to become less wide, smaller, longer, slimmer, less round and more circular, consistent with a de-differentiated phenotype. In healthy chondrocytes, 3 days after acute (72 h) IL-1β exposure, COL1A2 and IL-6 significantly increased but had minor effects on cell morphology. However, in healthy chondrocytes, persistent IL-1β led to more profound effects in all cell morphology descriptors and chondrocytes expressed significantly less COL2A1 and more IL-6 and IL-8 vs. controls and acutely-stimulated chondrocytes. In both OA and healthy chronically-stimulated chondrocytes, area, width and circularity were sensitive to the persistent presence of the IL-1β cytokine. Moreover, there were many significant and strong correlations among the measured parameters, with several indications of an IL-1β-mediated mechanism. Cell morphology combined with gene expression analysis could guide researchers interested in understanding inflammatory effects in the complex domain of cartilage/chondrocyte biology. Use of quantitative cell morphometry could complement classical approaches by providing numerical data on a large number of cells, thereby providing a biological fingerprint for describing chondrocyte phenotype, which could help to understand how changes in cell morphology lead to disease progression


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 44 - 44
1 Dec 2021
Pettit M Doran C Singh Y Saito M Kumar KHS Khanduja V
Full Access

Abstract. Objective. A higher prevalence of cam morphology has been reported in the athletic population but the development of the cam morphology is not fully understood. The purpose of this systematic review is to establish the timing of development of the cam morphology in athletes, the proximal femoral morphologies associated with its development, and other associated factors. Methods. Embase, MEDLINE and the Cochrane Library were searched for articles related to development of the cam morphology, and PRISMA guidelines were followed. Data was pooled using random effects meta-analysis. Study quality was assessed using the Downs and Black criteria and evidence quality using the GRADE framework. Results. This search identified 16 articles involving 2,028 participants. In males, alpha angle was higher in athletes with closed physes than open physes (SMD 0.71; 95% CI 0.23, 1.19). Prevalence of cam morphology was associated with age during adolescence when measured per hip (β 0.055; 95% CI 0.020, 0.091) and per individual (β 0.049; 95% CI 0.034, 0.064). Lateral extension of the epiphysis was associated with an increased alpha angle (r 0.68; 95% CI 0.63, 0.73). A dose-response relationship was frequently reported between sporting frequency and cam morphology. There was a paucity of data regarding the development of cam morphology in females. Conclusions. Very low and low quality evidence suggests that in the majority of adolescent male athletes’ osseous cam morphology developed during skeletal immaturity, and that prevalence increases with age. Very low quality evidence suggests that osseous cam morphology development was related to lateral extension of the proximal femoral epiphysis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 56 - 56
17 Nov 2023
Algarni M Amin A Hall A
Full Access

Abstract. Objectives. Osteoarthritis (OA) is a complex joint disorder characterised by the loss of extracellular matrix (ECM) leading to cartilage degeneration. Changes to cartilage cell (chondrocyte) behaviour occur including cell swelling, the development of fine cytoplasmic processes and cell clustering leading to changes in cell phenotype and development of focal areas of mechanically-weak fibrocartilaginous matrix. [1]. To study the sequence of events in more detail, we have investigated the changes to in situ chondrocytes within human cartilage which has been lightly scraped and then cultured with serum. Methods. Human femoral heads were obtained with Ethical permission and consent from four female patients (mean age 74 yrs) undergoing hip arthroplasty following femoral neck fracture. Osteochondral explants of macroscopically-normal cartilage were cultured as a non-scraped control, or scraped gently six times with a scalpel blade and both maintained in culture for up to 2wks in Dulbecco's Modified Eagle's Medium (DMEM) with 25% human serum (HS). Explants were then labelled with CMFDA (5-chloromethylfluorescein-diacetate) and PI (propidium iodide) (10μM each) to identify the morphology of living or dead chondrocytes respectively. Explants were imaged using confocal microscopy and in situ chondrocyte morphology, volume and clustering assessed quantitatively within standardised regions of interest (ROI) using Imaris. ®. imaging software. Results. Within 2wks of culture with HS, chondrocyte volume increased significantly from 412±9.3µm. 3. (unscraped) at day 0 to 724±16.6 µm. 3. (scraped) [N(n) = 4(380)] (P=0.0002). Chondrocyte clustering was a prominent feature of HS culture as the percentage of clusters in the cell population increased with scraping from 4.8±1.4% to 14.9±3.9% [N(n) = 4(999)] at week 2 (P=0.0116). In addition, the % of the chondrocyte population within clusters increased from approximately 38% to 60%, and the number of cells per cluster increased significantly from 3.2±0.08 to 4±0.22 (P=0.031). The development of abnormal ‘fibroblastic-like’ chondrocyte morphology demonstrating long (>5µm) cytoplasmic processes also occurred, however the time course of this was more variable. For some samples, clustering occurred before abnormal morphology, but for others the opposite occurred. Typically, by the second week, 17±2.64% of the cell population had processes and this increased to 22±4.02% [N(n) = 4(759)] with scraping. Conclusions. Scraping the cartilage will remove surface constituents including lubricants (e.g. lubricin, hyaluronic acid, phospholipids), extracellular matrix constituents (collagen, proteoglycans – potentially the ‘lamina splendens’) and cells (chondrocytes and mesenchymal stromal cells (MSCs)). Although we do not know which of these component(s) is important, the effect is to dramatically increase the permeation of serum factors into the cartilage matrix and signal the development of cytoplasmic processes, cell clustering and swelling. It is notable that these cellular changes are similar to those occurring in early OA. [1]. This raises the interesting possibility that scraped cartilage cultured with human serum recapitulates some of the changes to in situ chondrocytes during early stages of cartilage degeneration and as such, could be a useful model for following the deleterious changes to matrix metabolism. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 43 - 43
1 Dec 2021
Doran C Pettit M Singh Y Kumar KHS Khanduja V
Full Access

Abstract. Background. Femoroacetabular impingement (FAI) has been extensively investigated and is strongly associated with athletic participation. The aim of this systematic review is to assess: the prevalence of cam-type FAI across various sports, whether kinematic variation between sports influences hip morphology, and whether performance level, duration and frequency of participation or other factors influence hip morphology in a sporting population. Methods. A systematic search of Embase, PubMed and the Cochrane Library was undertaken following PRISMA guidelines. The study was registered on the PROSPERO database (CRD4202018001). Prospective and retrospective case series, case reports and review articles published after 1999 were screened and those which met the inclusion criteria decided a priori were included for analysis. Results. The literature search identified 58 relevant articles involving 5,683 participants. Forty-nine articles described a higher prevalence of FAI across various ‘hip-heavy’ sports, including soccer, basketball, baseball, ice hockey, skiing, golf and ballet. In studies including non-athlete controls, a greater prevalence of FAI was reported in 66.7% of studies (n=8/12). The highest alpha angle was identified at the 1 o'clock position (n=9/9) in football, skiing, golf, ice hockey and basketball. Maximal alpha angle was found to be located in a more lateral position in goalkeepers versus positional players in ice hockey (1 o'clock vs 1.45 o'clock). A positive correlation was also identified between the alpha angle and both age and activity level (n=5/8 and n=2/3, respectively) and also between prevalence of FAI and both age and activity level (n=2/2 and n=4/5), respectively. Conclusions. Hip-heavy sports show an increased prevalence of FAI, with specific sporting activities influencing hip morphology. Both a longer duration and increased level of training also resulted in an increased prevalence of FAI


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 62 - 62
1 Mar 2021
Talbott H Wilkins R Cooper R Redmond A Brockett C Mengoni M
Full Access

Abstract. OBJECTIVE. Flattening of the talar dome is observed clinically in haemarthropathy as structural and functional changes advance but has not been quantified yet. In order to confirm clinical observation, and assess the degree of change, morphological measurements were derived from MR images. METHODS. Four measurements were taken, using ImageJ (1.52v), from sagittal MRI projections at three locations – medial, lateral and central: Trochlear Tali Arc Length (TaAL), Talar Height (TaH), Trochlear Tali Length (TaL), and Trochlear Tali Radius (TaR). These measurements were used to generate three ratios of interest: TaR:TaAL, TaAL:TaL, and TaL:TaH. With the hypothesis of a flattening of the talar dome with haemarthropathy, it was expected that TaR:TaAL and TaL:TaH should be greater for haemophilic ankles, and TaAL:TaL should be smaller. A total of 126 MR images (ethics: MEEC 18–022) were included to assess the difference in those ratios between non-diseased ankles (33 images from 11 volunteers) and haemophilic ankles (93 images from 8 patients’ ankles). Non-diseased control measurements were compared to literature to assess the capacity of doing measurements on MRI instead of radiographs or CT. RESULTS. Reasonable agreement was found between measurements on non-diseased ankles and those from literature, with greatest variance in TaAL. The medial talus demonstrated decreases in all dimensions with haemophilia (TaR=2.4%, TaL=14.7%, TaAL=19.5% and TaH=27.8%; t-test at p<0.05), as did the lateral talus (TaR=6.2%, TaL=6.8%, TaAL=12.0% and TaH=22.4%; t-test at p<0.05). The effect on the central talus was not significant. TaAL:TaL showed talar flattening in the medial and lateral haemophilic talus (healthy medial=1.21, lateral=1.20; haemophilic medial=lateral=1.14). CONCLUSION. The results demonstrate non-uniform increased influence of haemarthropathy at the medial and lateral talar extremes, with relatively healthy measurements seen in the centre. The degree of morphological change is however progressive, differing with each haemophilic ankle. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 10 - 10
1 Mar 2021
Kooiman E Styczynska-Soczka K Amin A Hall A
Full Access

Abstract. Objectives. Human articular cartilage chondrocytes undergo changes to their morphology and clustering with cartilage degeneration as occurs in osteoarthritis. (1). The consequences of chondrocyte de-differentiation on mechanically-resilient extracellular matrix metabolism are, however, unclear. We have assessed whether there is a relationship between abnormal chondrocyte morphology, as demonstrated by the presence of cytoplasmic processes, and chondrocyte clustering, with cell-associated type-I collagen during cartilage degeneration. Methods. The femoral heads of 9 patients were obtained (with Ethical permission/consent) following hip replacement surgery and cartilage areas graded (Grade-0 non-degenerate; Grade-1 mildly degenerate). In situ chondrocyte morphology and cell-associated type-I collagen were labelled fluorescently with CMFDA Cell tracker green, and immuno-fluorescence respectively then visualised/quantified using confocal laser scanning microscopy and imaging software. Results. When comparing data from 9 femoral heads with Grade-0 [N(n)=6(72)] or Grade-1 cartilage [(N(n)=9(108)], the latter had a higher percentage of chondrocytes with cytoplasmic processes (length >5µm) (P=0.018) and clusters (≥5 cells within a lacuna) (P<0.001). The percentage of chondrocytes with processes and clusters displaying cell-associated type-I collagen, was also higher in degenerate cartilage (P<0.001 for both). However, some morphologically-normal chondrocytes exhibited cell-associated collagen type-I labelling while some clusters did not label with collagen type-I. Intriguingly, even in Grade-0 cartilage, some chondrocytes were morphologically abnormal and exhibited cell-associated type-I collagen. Conclusions. These results suggest a complex relationship between chondrocyte morphology/clusters and cell-associated collagen type-I. The presence of this collagen type implies chondrocyte de-differentiation to a fibroblastic phenotype even in non-degenerate cartilage. This cell type produces a fibro-cartilaginous ‘repair’ matrix which is considerably weaker than the collagen type-II matrix of healthy hyaline cartilage and may give rise to focal points of mechanical weakness. Funder. Chief Scientist's Office, Scotland (Grant TCS/18/01). Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 22 - 22
1 Nov 2021
Belvedere C Leardini A Gill R Ruggeri M Fabbro GD Grassi A Durante S Zaffagnini S
Full Access

Introduction and Objective. Medial Knee Osteoarthritis (MKO) is associated with abnormal knee varism, this resulting in altered locomotion and abnormal loading at tibio-femoral condylar contacts. To prevent end-stage MKO, medial compartment decompression is selectively considered and, when required, executed via High Tibial Osteotomy (HTO). This is expected to restore normal knee alignment, load distribution and locomotion. In biomechanics, HTO efficacy may be investigated by a thorough analysis of the ground reaction forces (GRF), whose orientation with respect to patient-specific knee morphology should reflect knee misalignment. Although multi-instrumental assessments are feasible, a customized combination of medical imaging and gait analysis (GA), including GRF data, rarely is considered. The aim of this study was to report an original methodology merging Computed-Tomography (CT) with GA and GFR data in order to depict a realistic patient-specific representation of the knee loading status during motion before and after HTO. Materials and Methods. 25 MKO-affected patients were selected for HTO. All patients received pre-operative clinical scoring, and radiological/instrumental assessments; so far, these were also executed post-operatively at 6-month follow-up on 7 of these patients. State-of-the-art GA was performed during walking and more demanding motor tasks, like squatting, stair-climbing/descending, and chair-rising/sitting. An 8-camera motion capture system, combined with wireless electromyography, and force platforms for GRF tracking, was used together with an own established protocol. This marker-set was enlarged with 4 additional skin-based non-collinear markers, attached around the tibial-plateau rim. While still wearing these markers, all analyzed patients received full lower-limb X-ray in standing posture a CT scan of the knee in weight-bearing Subsequently, relevant DICOMs were segmented to reconstruct the morphological models of the proximal tibia and the additional reference markers, for a robust anatomical reference frame to be defined on the tibia. These marker trajectories during motion were then registered to the corresponding from CT-based 3D reconstruction. Relevant registration matrices then were used to report GRF data on the reconstructed tibial model. Intersection paths of GRF vectors with respect to the tibial-plateau plane were calculated, together with their centroids. Results. Pre-operative clinical and radiological scoring confirmed MKO and associated abnormal varism. The morphological characterization of GRF was successfully achieved pre- and post- HTO on patient-specific tibial plateau. Pre-operative GFR patterns and peaks, including those related to knee joint moments, were observed medially on the knee, as expected. In post-HTO, these resulted lateralized and much closer to the tibial plateau spine, as desired. In detail, when post- is compared to pre-op, the difference of the centroids were, on average, 54.6±18.1 mm (min÷max: 36.7÷72.8 mm) more lateral during walking and 52.5±28.5 mm (24.7÷87.6 mm) during stair climbing. When reported in % of the tibial plateau width, these values became 69.2±20.1 (46.1÷81.4) and 78.1±30.1 (43.4÷98.0), respectively. Post-op also clinical scores and GA revealed a considerable overall improvement, especially in functional performances. Conclusions. The reported novel approach allows a combination of motion data, including GFR, and tibial-plateau morphology. Relevant pre- and post-operative routine application offer a quantification of the effect of the original deformity and executed joint realignment, and an assistance for surgical planning in case of HTO as well as ideally in other orthopedic treatments


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 147 - 147
1 Nov 2021
Valente C Haefliger L Favre J Omoumi P
Full Access

Introduction and Objective. To estimate the prevalence of acetabular ossifications in the adult population with asymptomatic, morphologically normal hips at CT and to determine whether the presence of labral ossifications is associated with patient-related (sex, age, BMI), or hip-related parameters (joint space width, and cam- and pincer-type femoroacetabular impingement morphotype). Materials and Methods. We prospectively included all patients undergoing thoracoabdominal CT over a 3-month period. After exclusion of patients with a clinical history of hip pathology and/or with signs of osteoarthritis on CT, we included a total of 150 hips from 75 patients. We analyzed the presence and the size of labral ossifications around the acetabular rim. The relationships between the size of labral ossifications and patient- and hip-related parameters were tested using multiple regression analysis. Results. The prevalence of labral ossifications in this population of asymptomatic, non-OA hips was 96% (95%CI=[80.1; 100.0]). The presence of labral ossifications and their size were correlated between right and left hips (Spearman coefficient=0.64 (95%CI=[0.46; 0.79]), p<0.05)). The size of labral ossifications was significantly associated with age (p<0.0001) but not with BMI (p=0.35), gender (p=0.05), joint space width (p≥0.53 for all locations) or any of the qualitative or quantitative parameters associated with femoroacetabular morphotype (all p≥0.34). Conclusions. Labral ossifications are extremely common in asymptomatic, non-osteoarthritic hips. Their size is not correlated with any patient-, or hip-related parameters except for the age. These findings suggest that the diagnosis of osteoarthritis or femoroacetabular impingement morphotype should not be made based on the sole presence of acetabular labral ossifications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 24 - 24
2 Jan 2024
Burgos J Mariscal G Antón-Rodrigálvarez L Sanpera I Hevia E García V Barrios C
Full Access

The aim of this study was to report the restauration of the normal vertebral morphology and the absence of curve progression after removal the instrumentation in AIS patients that underwent posterior correction of the deformity by common all screws construct whitout fusion. A series of 36 AIS immature patients (Risser 3 or less) were include in the study. Instrumentation was removed once the maturity stage was complete (Risser 5). Curve correction was assessed at pre and postoperative, before instrumentation removal, just post removal, and more than two years after instrumentation removal. Epiphyseal vertebral growth modulation was assessed by a coronal wedging ratio (WR) at the apical level of the main curve (MC). The mean preoperative coronal Cobb was corrected from 53.7°±7.5 to 5.5º±7.5º (89.7%) at the immediate postop. After implants removal (31.0±5.8 months) the MC was 13.1º. T5–T12 kyphosis showed a significant improvement from 19.0º before curve correction to 27.1º after implants removal (p<0.05). Before surgery, WR was 0.71±0.06, and after removal WR was 0.98±0.08 (p<0.001). At the end of follow-up, the mean sagittal range of motion (ROM) of the T12-S1 segment was 51.2±21.0º. SRS-22 scores improved from 3.31±0.25 preoperatively to 3.68±0.25 at final assessment (p<0.001). In conclusion, fusionless posterior approach using a common all pedicle screws construct correct satisfactory scoliotic main curves and permits removal of the instrumentation once the bone maturity is reached. The final correction was highly satisfactory and an acceptable ROM of the previously lower instrumented segments was observed


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 12 - 12
1 Jan 2019
Sanghani-Kerai A Achilleos A Lanchashire H Coathup M Blunn G
Full Access

During remodelling, osteoclasts produce discrete bone cavities filled with bone and this is associated with the dimensions of the cavity. The aim of this study is to investigate the effect of pores of similar size to those produced by osteoclasts on the morphology, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. The hypothesis is that a porous surface similar in morphology to a bone surface prepared by osteoclasts will increase cell proliferation and osteogenic differentiation of MSCs. Sheep BMSCs were seeded onto plain titanium surfaces and 100µm, 250µm and 500µm discrete pores surfaces. Cell metabolic activity was investigated using Presto Blue on days 3, 7 and 10. Bone mineralisation was quantified by Alizarin red staining at days 3, 7 and 14. Cell morphology was observed by scanning electron microscopy (SEM). Data was statistically analysed using one-way analysis of variance and a Bonferroni correction method. Cells on porous discs had a three dimensional phenotype and aligned on the circumference of each pore. Metabolic activity was significantly higher by day 10 on plain discs compared to all porous discs. Bone mineralization was significantly higher on 100µm pores by day 3 (0.545mM±0.66; p=0.047) than plain discs and significantly higher on both 100µm and 250µm pores by day 7(p=0.000 and p=0.005) than plain discs. Substantial mineralised bone matrix was found on 100µm discs without being treated with osteogenic supplements, compared to other control disc types (p=0.043, p=0.003, p=0.000). The different topographies altered cell behaviour and migration.100µm pores demonstrated earlier and enhanced bone mineralisation even in the absence of osteogenic supplements. This pore size is aligned to the size of individual resorption bays that osteoclasts produce on bone surfaces and is considerably lower than the pore sizes used to enhance osteo-integration of implant surfaces


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 743 - 746
1 May 2010
Colegate-Stone T Allom R Singh R Elias DA Standring S Sinha J

The aim of this study was to establish a classification system for the acromioclavicular joint using cadaveric dissection and radiological analyses of both reformatted computed tomographic scans and conventional radiographs centred on the joint. This classification should be useful for planning arthroscopic procedures or introducing a needle and in prospective studies of biomechanical stresses across the joint which may be associated with the development of joint pathology. We have demonstrated three main three-dimensional morphological groups namely flat, oblique and curved, on both cadaveric examination and radiological assessment. These groups were recognised in both the coronal and axial planes and were independent of age


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 4 - 4
1 Oct 2016
Cheng Y Sorousheh S Coathup M Blunn G
Full Access

Mesenchymal stem cells (MSCs) are usually believed to be immune-privileged. However, immunogenic MSCs were also reported. We hypothesize that there are differences between MSC clones from the same individual in terms of their morphology, proliferation, differentiation and immunogenicity. Our goal is to discover immune-privileged stem cells for universal allogenic MSCs transplantation. Serial dilutions of bone-marrow derived (BMMSCs) and adipose derived mesenchymal stem cells (ADMSCs) from same animal were carried out to isolate single-cell clones. From a single animal we obtained 3 clones from BMMSCs and 3 from ADMSCs. The proliferation rate of each clonal culture and mixed clonal culture were measured. The tri-differentiation potential of the clonal cultures was compared, as well as with the original isolates from bone marrow and fat. The immune-privileged properties were measured by flow cytometry and immuno-staining for the major histocompatibility complex (MHC) antigens. Mixed leucocyte reaction (MLR) were also performed to investigate immunogenicity. Tri-differentiation was confirmed in all isolates. All clonal cultures revealed significant different morphology and proliferation rates, compared with each other and mixed cultures. All clonal cultures showed different surface markers, inclusive of MHC antigens. One clone from ADMSCs showed lack of MHC antigens. Our MLR and MHC staining disclosed variety of immune properties. All clones tri-differentiated which indicated a degree of ‘stemness’. MSCs are generally believed not to express MHC II, resulting in immune-privileged. Our results confirmed our hypothesis because clonal cultures isolated from different origins of same animal show differences in morphology, proliferation rate, and surface marker presentation. Individual immune differences highlighted through single-cell clonal cultures may be crucial to find universal immune-privileged MSCs as universal allogeneic donor


Bone strength is influenced by bone quality besides its density. This study aimed to evaluate the effects of teriparatide on changes of bone strength as well as trabecular and cortical bone microstructures at femoral neck in female ovariectomized (OVX) rats. Eighteen female Wister rats were divided into three groups: the sham control, OVX and treatment (Tx) groups. All of them were sacrificed after 3-month intermittent teriparatide intervention in Tx group. All left femurs were removed and scanned using micro-CT and followed by mechanical test for each femoral neck. Regarding micro-CT, four trabecular parameters including bone volume fraction (BV/TV), trabecular thickness (TbTh), trabecular separation (TbSp), and trabecular number (TbN) and three cortical parameters including volumetric bone mineral density (vBMD), cortical cross-sectional area (CtAr) and cortical thickness (CtTh) were measured at femoral neck region. All data were analyzed and was presented as median ± SEM. The mean bone strength of femoral neck significantly decreased in OVX group when compared to the control group (p < 0.05) and was significantly restored in Tx group (p < 0.01). Regarding the trabecular parameters, the BV/TV and TbTh significantly decreased in OVX group while compare to Tx group. However, no significant difference was observed in TbSp and TbN between the groups. Regarding the cortical parameters, CtTh was significantly greater in Tx group than that in OVX group (p<0.01). As our findings, intermittent teriparatide can improve the deteriorated bone strength of femoral neck due to ovarian deficiency via changing both trabecular microarchitecture and cortical morphology


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 104 - 104
1 Nov 2018
Alruwaili M Reynaud E Rodriguez B
Full Access

Hydrogels are hydrated 3-dimensional (3D) polymer networks that can be chemically or physically crosslinked. Interest in the use of hydrogels for tissue engineering applications has been growing in the past few decades due to their excellent biocompatibility and biodegradability. One of the major drawbacks of the use of hydrogels in such applications is their lack of structural strength. To address this, in this work, we have combined two hydrogel types, namely gelatin and alginate. In this work, a 1 ml volume of gelatin alginate hydrogel was molded in each well of a 24 well-plate and crosslinked with different concentrations of calcium chloride (CaCl. 2. ) (20, 40, 60, 80, and 100 mM) to investigate the influence of concentration on hydrogel properties and cell viability. The hydrogel was characterized using Fourier transform infrared (FTIR) spectrometry, environmental scanning electron microscopy (ESEM), and an Alamar blue assay to assess the chemical structure, the surface morphology, and the epithelial cell viability of the hydrogel, respectively. The FTIR analysis shows that network formation improved with increasing concentration; decreased ion-polymer interactions have been noted for concentrations ≤ 60 mM. This appears to be in agreement with ESEM images that show an evolution from a smooth, featureless surface to the appearance of surface pore structure for concentrations ≥ 80 mM. Perhaps as ion concentration increases and network formation improves, the effect is evidenced as surface porosity; low concentrations result in swelling and a smooth surface. In terms of cell viability, viability has been found to increase with increasing concentration. The cell viability is 90 % at 100 mM CaCl. 2. , in contrast to 50 % for a concentration of 20 mM after 9 days of incubation. It is possible that the reduced viability can be attributed to the high proportion of uncrosslinked polymer chains at low concentrations. Overall, these results provide useful information about the role of crosslinking concentration on hydrogel properties, knowledge that may be applied to 3D bioprinting


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 81 - 81
1 Jan 2017
Cheng Y Samizadeh S Coathup M Blunn G
Full Access

Mesenchymal stem cells (MSCs) are believed to be immune-privileged due to lack of antigen-presenting-cell related markers, however, evidence suggests that MSCs are immunogenic and are attacked by the immune system. Our research investigates the hypothesis that there are differences between MSC clones from the same individual in terms of their morphology, proliferation, differentiation and immune profile. Our goal is to discover immune-privileged stem cells, which can act as a universal allogenic mesenchymal stem cell donor to facilitate bone ingrowth for osteosarcoma patients status post tumor excision and prosthesis implantation. Serial dilutions of bone-marrow derived (BMMSCs) and adipose derived mesenchymal stem cells (ADMSCs) from same animal were carried out in order to isolate single-cell clones. From a single animal we obtained 3 clones from BMMSCs and 3 from ADMSCs. This procedure was repeated for another other 2 animals. The proliferation rate and cell doubling time of each clonal culture was measured. The proliferation rate of mixed clonal cultures was also measured. The tri-differentiation potential of the clonal cultures was compared and a comparison was also made with the original isolates from bone marrow and fat. The immune-privileged properties were measured by flow cytometry and immuno-staining for the major histocompatibility complex (MHC) antigens. To measure the immune response a mixed leucocyte reaction was used but where leucocytes from a different individual were mixed with the clonal MSC cells. All isolates were able to differentiate into osteoblasts, chondrocytes and adipocytes. All clonal cultures revealed significantly different proliferation rates and doubling times when compared with each other and with mixed cultures. All clonal cultures showed different surface marker presentations, which included differences in the expression of MHC antigens. One clone isolated from ADMSCs showed lack of MHCI and MHCII. Our mixed leucocyte reaction and MHC staining showed variety of immune-modulation and this was related to the expression of the MHC antigens. All clones tri-differentiated and therefore show a degree of ‘stemness’. MSCs are generally are believed not to express MHC II and to be immune-privileged. However, this study shows that the expression of these antigens in clones isolated from bone marrow and from fat is variable. A heterogeneous result indicates individual differences between MSCs, even from same origin. The immune response elicited by MSCs is complicated. MSCs have been shown to release interleukin 10, which could inhibit the immune response but on the other hand interferon-gamma could enhance MHCII presentation in some MSCs. Our results confirmed our hypothesis because clonal cultures isolated from different sources of MSCs in the same animal showed significant differences in proliferation rate, morphology and surface marker presentation. Mesenchymal stem cells are not immunogenic or immune-privileged. Individual differences highlighted through single-cell clonal cultures may be the key to finding a universal immune-privileged MSCs for allogeneic transplantation


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 4 | Pages 711 - 719
1 Jul 1998
Sugano N Noble PC Kamaric E Salama JK Ochi T Tullos HS

We studied the morphometry of 35 femora from 31 female patients with developmental dysplasia of the hip (DDH) and another 15 from 15 age- and sex-matched control patients using CT and three-dimensional computer reconstruction models. According to the classification of Crowe et al 15 of the dysplastic hips were graded as class I (less than 50% subluxation), ten as class II/III (50% to 100% subluxation) and ten as class IV (more than 100% subluxation).

The femora with DDH had 10 to 14° more anteversion than the control group independent of the degree of subluxation of the hip. In even the most mildly dysplastic joints, the femur had a smaller and more anteverted canal than the normal control. With increased subluxation, additional abnormalities were observed in the size and position of the femoral head. Femora from dislocated joints had a short, anteverted neck associated with a smaller, narrower, and straighter canal than femora of classes I and II/III or the normal control group.

We suggest that when total hip replacement is performed in the patient with DDH, the femoral prosthesis should be chosen on the basis of the severity of the subluxation and the degree of anteversion of each individual femur.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 53 - 53
1 Jul 2014
Wada H Mishima H Hyodo K Yamazaki M
Full Access

Summary Statement

We used three-dimensional software to assess different anatomic variables in the femur. The canal of Femur twisted slightly below the lesser trochanter in cases with a larger angle of anteversion.

Introduction

Accurate positioning of the joint prosthesis is essential for successful total hip arthroplasty (THA). To aid in tailoring of the prosthesis, we used three-dimensional software to assess different anatomic variables in the femur.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 1012 - 1018
1 Jul 2005
Beck M Kalhor M Leunig M Ganz R

Recently, femoroacetabular impingement has been recognised as a cause of early osteoarthritis. There are two mechanisms of impingement: 1) cam impingement caused by a non-spherical head and 2) pincer impingement caused by excessive acetabular cover. We hypothesised that both mechanisms result in different patterns of articular damage. Of 302 analysed hips only 26 had an isolated cam and 16 an isolated pincer impingement. Cam impingement caused damage to the anterosuperior acetabular cartilage with separation between the labrum and cartilage. During flexion, the cartilage was sheared off the bone by the non-spherical femoral head while the labrum remained untouched. In pincer impingement, the cartilage damage was located circumferentially and included only a narrow strip. During movement the labrum is crushed between the acetabular rim and the femoral neck causing degeneration and ossification.

Both cam and pincer impingement lead to osteoarthritis of the hip. Labral damage indicates ongoing impingement and rarely occurs alone.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 119 - 123
1 Jan 2009
Benson RT McDonnell SM Rees JL Athanasou NA Carr AJ

We assessed the predictive value of the macroscopic and detailed microscopic appearance of the coracoacromial ligament, subacromial bursa and rotator-cuff tendon in 20 patients undergoing subacromial decompression for impingement in the absence of full-thickness tears of the rotator cuff. Histologically, all specimens had features of degenerative change and oedema in the extracellular matrix. Inflammatory cells were seen, but there was no evidence of chronic inflammation. However, the outcome was not related to cell counts.

At three months the mean Oxford shoulder score had improved from 29.2 (20 to 40) to 39.4 (28 to 48) (p < 0.0001) and at six months to 45.5 (36 to 48) (p < 0.0001). At six months, although all patients had improved, the seven patients with a hooked acromion had done so to a less extent than those with a flat or curved acromion judged by their mean Oxford shoulder scores of 43.5 and 46.5 respectively (p = 0.046). All five patients with partial-thickness tears were within this group and demonstrated less improvement than the patients with no tear (mean Oxford shoulder scores 43.2 and 46.4, respectively, p = 0.04). These findings imply that in the presence of a partial-thickness tear subacromial decompression may require additional specific treatment to the rotator cuff if the outcome is to be improved further.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 78 - 78
17 Apr 2023
Luczak A Battle I Amin A Hall A
Full Access

The development of cytoplasmic processes from in situ chondrocytes is a characteristic feature of early osteoarthritis in human cartilage. The processes involve cytoskeletal elements and are distinct from the short primary cilia described in human chondrocytes. Vimentin is an intermediate filament playing an essential structural and signal-transduction role. We determined cellular levels and distribution of vimentin in chondrocytes of different morphologies in non-degenerate and mildly osteoarthritic cartilage. Femoral heads were obtained after consent from patients undergoing hip arthroplasty following femoral neck fracture. Cartilage explants were graded as non-degenerate (grade 0;G0) or mildly osteoarthritic (grade 1;G1) and labelled with the cytoplasmic dye CMFDA (5-chloromethylfluorescein-diacetate) for cell shape. Explants were cryosectioned and labelled for vimentin by fluorescence immunohistochemistry. In situ chondrocyte morphology was identified by confocal microscopy as either normal (rounded/elliptical) or abnormal (with one or more cytoplasmic process of ≥2µm) and vimentin levels and distribution determined semi-quantitatively and related to chondrocyte morphology. When all cells in G0 and G1 cartilage were compared, there was no difference between average levels of vimentin per cell (P=0.144)[6(261)];femoral heads:cells). When cells were separated on the basis of morphology, there was no difference between vimentin levels in cells with one or more cytoplasmic process compared to those of normal morphology (P>0.05;[6(261)]). However vimentin levels were much greater at the base of cytoplasmic processes compared to distant areas of the same cells (P=0.021)[5(29)]). Although overall levels of chondrocyte vimentin do not change in these early stages of osteoarthritis, the formation and structure of these substantial chondrocyte cytoplasmic processes involves changes to its distribution. These morphological changes are similar to those occurring during chondrocyte de-differentiation to fibroblasts reported in osteoarthritis which results in the formation of mechanically-inferior fibro-cartilage. Alterations to chondrocyte vimentin distribution either directly or indirectly may play a role in cartilage degeneration