Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 76 - 76
1 Dec 2022
Eltit F Ng T Gokaslan Z Fisher C Dea N Charest-Morin R
Full Access

Giant cell tumors of bone (GCTs) are locally aggressive tumors with recurrence potential that represent up to 10% of primary tumors of the bone. GCTs pathogenesis is driven by neoplastic mononuclear stromal cells that overexpress receptor activator of nuclear factor kappa-B/ligand (RANKL). Treatment with specific anti-RANKL antibody (denosumab) was recently introduced, used either as a neo-adjuvant in resectable tumors or as a stand-alone treatment in unresectable tumors. While denosumab has been increasingly used, a percentage of patients do not improve after treatment. Here, we aim to determine molecular and histological patterns that would help predicting GCTs response to denosumab to improve personalized treatment. Nine pre-treatment biopsies of patients with spinal GCT were collected at 2 centres. In 4 patients denosumab was used as a neo-adjuvant, 3 as a stand-alone and 2 received denosumab as adjuvant treatment. Clinical data was extracted retrospectively. Total mRNA was extracted by using a formalin-fixed paraffin-embedded extraction kit and we determined the transcript profile of 730 immune-oncology related genes by using the Pan Cancer Immune Profiling panel (Nanostring). The gene expression was compared between patients with good and poor response to Denosumab treatment by using the nSolver Analysis Software (Nanostring). Immunohistochemistry was performed in the tissue slides to characterize cell populations and immune response in CGTs. Two out of 9 patients showed poor clinical response with tumor progression and metastasis. Our analysis using unsupervised hierarchical clustering determined differences in gene expression between poor responders and good responders before denosumab treatment. Poor responding lesions are characterized by increased expression of inflammatory cytokines as IL8, IL1, interferon a and g, among a myriad of cytokines and chemokines (CCL25, IL5, IL26, IL25, IL13, CCL20, IL24, IL22, etc.), while good responders are characterized by elevated expression of platelets (CD31 and PECAM), coagulation (CD74, F13A1), and complement classic pathway (C1QB, C1R, C1QBP, C1S, C2) markers, together with extracellular matrix proteins (COL3A1, FN1,. Interestingly the T-cell response is also different between groups. Poor responding lesions have increased Th1 and Th2 component, but good responders have an increased Th17 component. Interestingly, the checkpoint inhibitor of the immune response PD1 (PDCD1) is increased ~10 fold in poor responders. This preliminary study using a novel experimental approach revealed differences in the immune response in GCTs associated with clinical response to denosumab. The increased activity of checkpoint inhibitor PD1 in poor responders to denosumab treatment may have implications for therapy, raising the potential to investigate immunotherapy as is currently used in other neoplasms. Further validation using a larger independent cohort will be required but these results could potentially identify the patients who would most benefit from denosumab therapy


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 126 - 126
1 Apr 2019
Lal S Hall R Tipper J
Full Access

Currently, different techniques to evaluate the biocompatibility of orthopaedic materials, including two-dimensional (2D) cell culture for metal/ceramic wear debris and floating 2D surfaces or three-dimensional (3D) agarose gels for UHMWPE wear debris, are used. Moreover, cell culture systems evaluate the biological responses of cells to a biomaterial as the combined effect of both particles and ions. We have developed a novel cell culture system suitable for testing the all three type of particles and ions, separately. The method was tested by evaluating the biological responses of human peripheral blood mononuclear cells (PBMNCs) to UHMWPE, cobalt-chromium alloy (CoCr), and Ti64 alloy wear particles. Methods. Clinically relevant sterile UHMWPE, CoCr, and Ti64 wear particles were generated in a pin-on-plate wear simulator. Whole peripheral blood was collected from healthy human donors (ethics approval BIOSCI 10–108, University of Leeds). The PBMNCs were isolated using Lymphoprep (Stemcell, UK) and seeded into the wells of 96-well and 384-well cell culture plates. The plates were then incubated for 24 h in 5% (v/v) CO. 2. at 37°C to allow the attachment of mononuclear phagocytes. Adherent phagocytes were incubated with UHMWPE and CoCr wear debris at volumetric concentrations of 0.5 to 100 µm. 3. particles per cell for 24 h in 5% (v/v) CO. 2. at 37°C. During the incubation of cells with particles, for each assay, two identical plates were set up in two configurations (one upright and one inverted). After incubation, cell viability was measured using the ATPlite assay (Perkin Elmer, UK). Intracellular oxidative stress was measured using the DCFDA-based reactive oxygen species detection assay (Abcam, UK). TNF-α cytokine was measured using sandwich ELISA. DNA damage was measured by alkaline comet assay. The results were expressed as mean ± 95% confidence limits and the data was analysed using one-way ANOVA and Tukey-Kramer post-hoc analysis. Results and Discussion. Cellular uptake of UHMWPE, CoCr and Ti64 particles was confirmed by optical microscopy. PBMNCs incubated with UHMWPE particles did not show any adverse responses except the release of significant levels of TNF-α cytokine at 100 µm. 3. particles per cell, when in contact with particles. PBMNCs incubated with CoCr wear particles showed adverse responses at high particle doses (100 µm. 3. particles per cell) for all the assays. Moreover, cytotoxicity was observed to be a combined effect of both particles and ions, whereas oxidative stress and DNA damage were mostly caused by ions. Ti64 wear particles did not show any adverse responses except cytotoxicity at high particle doses (100 µm. 3. particles per cell). Moreover, this cytotoxicity was mostly found to be a particle effect. In conclusion, the novel cell culture system is suitable for evaluating the biological impact of orthopaedic wear particles and ions, separately


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 49 - 49
1 Aug 2020
Sheyn D Papalamprou A Chahla J Chan V Limpisvasti O Mandelboum B Metzger M
Full Access

The meniscus is at the cornerstone of knee joint function, imparting stability and ensuring shock absorption, load transmission, and stress distribution within the knee joint. However, it is very vulnerable to injury and age-related degeneration. Meniscal tears are reported as the most common pathology of the knee with a mean annual incidence of 66 per 100,000. Knee osteoarthritis progresses more rapidly in the absence of a functional meniscus. Historically, tears extending to the avascular inner portion of the meniscus (white-white zone, “WW”), such as radial tears were considered as untreatable and were often resected, due to the lack of vascularity in the WW zone. Perfusion-based anatomical studies performed on cadaveric menisci in the 1980s shaped the current dogma that human meniscus has poor regenerative capacity, partly due to limited blood supply that only reaches 10 to 25% of the meniscus, commonly referred to as red-red zone (“RR”). Previous studies, including those utilizing animal models have shown mobilization of Mesenchymal Stem Cells (MSCs) upon injury into the WW zone, and successful MSC recruitment when administered externally to the injury site. We and others have recently reported positive outcomes of repaired tears in the inner zone of patients. We hypothesized that the “avascular” white-white zone of the meniscus possesses regenerative capacity due to a resident stem/progenitor cell population. Further, we sought to redefine the presence of microvessels in all meniscal zones using advanced stereology and imaging modalities. Fifteen menisci from fresh human cadaveric knees (mean age: 21.53±6.53 years) without evidence of previous injury were obtained from two tissue banks (JRF, Centennial, CO) and Biosource Medical (Lakeland, FL) and utilized for this study. The use of cadaveric specimens for research purposes was approved by the institutional review board. Tibial plateaus were dissected to harvest medial and lateral menisci along their entire length. The RR, red-white (RW) and WW zones were dissected and separated into three thirds from the inner aspect to the marginal border of the meniscus and their wet weights recorded (Fig.1A). Meniscus tissue cellular content in each zone was obtained from dissociation of meniscus tissue using 0.02% w/v pronase (Millipore) for 1h at 37oC, followed by 18h 0.02% w/v collagenase II (Worthington) at 37oC with shaking. Isolated cells were characterized immediately after harvest using flow cytometry with antibodies against MSCs surface markers (CD105, CD90, CD44 and CD29) as well as respective isotype controls. Further, meniscal cells were cultured and split twice when confluence was reached, characterized at P2 and compared to bone marrow-derived MSCs (BM-MSCs) using the same markers. Self-renewal of cells was assessed using colony forming unit (CFU) assay. Differentiation assays were performed to assess whether colony-forming cells retained multilineage potential. For morphological examination of bigger vessels, samples were fixed in 10% formalin for 1 week, paraffin embedded, sectioned (4 μm thick) and stained with H&E and Masson's trichrome. Presence of microvessels was assessed by CD31 immunofluorescence staining. Further, menisci were cleared using the uDisco protocol labeled with the TO-PRO®-3 stain, a fluorescent dye that stains cell nuclei and imaged using light-sheet microscopy. All continuous data are presented as mean ±standard deviation. Non-repeated measures analysis of variance (ANOVA) and Tukey-Kramer HSD post hoc analysis were performed on sample means for continuous variables. Statistical significance was set at p < 0 .05. Menisci were successfully cleared using a modified uDISCO procedure, imaged and analyzed for total cell density. As expected, bigger vessels were observed in RR but not in WW. However, immunofluorescent staining for CD31 showed a subset of CD31+endothelial cells present in the WW zone, indicating the presence of small vessels, most likely capillaries. In order to assess whether enzymatic digestion had a differential result depending on meniscus zone due to cellular content, we analyzed yields per meniscus per zone. The wet weight of different zones (WW:RW:RR) was at a ratio of ∼1:3:5 respectively, however, the ratio of cells isolated from each zone was at ∼1:4:20, indicating that RR has a denser population of mononuclear cells. However, the difference between all zones in cell yields was not significant. The clonogenic potential of isolated cells was shown to be non-significantly different between the three zones. Differentiation of isolated cells to osteogenic lineage using osteogenic media in vitroshowed no difference between the three zones. Flow cytometry analysis of cells from the three meniscal zones displayed presence of two distinct subpopulations of cells immediately after isolation. One subpopulation was positive to MSC surface markers and the other negative. Additionally, flow cytometry of cultured meniscal cells at P2 displayed that the entire cell population was CD44+CD105+CD29+CD90+, suggesting that culturing meniscal cells results in selection of stem/progenitor cells (plastic adherence). Surface marker expression analysis showed differential expression patterns between markers depending on zone. Similar fraction of cells was detected to express both MSC markers CD90 and CD105 (7–10%) and similar fraction of cells expressed both MSC markers CD29 and CD44 (1–2%) in all three zones, indicating similar density of resident stem/progenitor cells in each zone. Importantly, WW showed significantly higher expression for all four MSC markers compared to the RR zone, indicating higher relative density of stem/progenitor resident cells in the WW zone. Our results determine that CD31-expressing microvessels were present in all zones, including the WW zone, which was previously considered completely avascular. Additionally, stem/progenitor cells were shown to be present in all three zones of the menisci, including the WW zone, showcasing its regenerative potential. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 133 - 133
1 May 2016
Lal S Allinson L Hall R Tipper J
Full Access

Introduction. Silicon nitride (SiN) is a recently introduced bearing material for THR that has shown potential in its bulk form and as a coating material on cobalt-chromium (CoCr) substrates. Previous studies have shown that SiN has low friction characteristics, low wear rates and high mechanical strength. Moreover, it has been shown to have osseointegration properties. However, there is limited evidence to support its biocompatibility as an implant material. The aim of this study was to investigate the responses of peripheral blood mononuclear cells (PBMNCs) isolated from healthy human volunteers and U937 human histiocytes (U937s) to SiN nanoparticles and CoCr wear particles. Methods. SiN nanopowder (<50nm, Sigma UK) and CoCr wear particles (nanoscale, generated in a multidirectional pin-on-plate reciprocator) were heat-treated for 4 h at 180°C and dispersed by sonication for 10 min prior to their use in cell culture experiments. Whole peripheral blood was collected from healthy donors (ethics approval BIOSCI 10–108, University of Leeds). The PBMNCs were isolated using Lymphoprep® as a density gradient medium and incubated for 24 h in 5% (v/v) CO2at 37°C to allow attachment of mononuclear phagocytes. SiN and CoCr particles were then added to the phagocytes at a volume concentration of 50 µm3 particles per cell and cultured for 24 h in RPMI-1640 culture medium in 5% (v/v) CO2 at 37°C. Cells alone were used as a negative control and lipopolysaccharide (LPS; 200ng/ml) was used as a positive control. Cell viability was measured after 24 h by ATPLite assay and tumour necrosis factor alpha (TNF-α) release was measured by sandwich ELISA. U937s were co-cultured with SiN and CoCr particles at doses of 0.05, 0.5, 5 and 50 µm3 particles per cell for 24h in 5% (v/v) CO2 at 37 C. Cells alone were used as a negative control and camptothecin (2 µg/ml) was used as a positive control. Cell viability was measured after 0, 1, 3, 6 and 9 days. Results from cell viability assays and TNF-α response were expressed as mean ±95% confidence limits and the data was analysed using one-way ANOVA and Tukey-Kramer post-hoc analysis. Results and Discussion. At a high volume concentration of particles (50µm3 per cell), SiN did not affect the viability of PBMNCs, while CoCr significantly reduced the viability over a 24 h period [Figure 1A]. Similarly, SiN particles had no effect on the viability of U937s up to 9 days with a range of particle doses (0.05–50 µm3 per cell) [Figure 2A]. In contrast, CoCr particles significantly reduced the viability of U937s after 6 days [Figure 2B]. Additionally, CoCr particles caused significantly elevated levels of pro-inflammatory cytokine TNF-α, whereas no inflammation was associated with SiN particles [Figure 1B]. Conclusion. This study has demonstrated the in-vitro biocompatibility of SiN nanoparticles. Therefore, SiN is a promising orthopaedic bearing material not only due to its suitable mechanical and tribological properties, but also due to its biocompatibility. Acknowledgements. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. GA-310477 LifeLongJoints


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 24 - 24
1 Mar 2012
Dahabreh Z Howard M Campbell P Giannoudis P
Full Access

Aim. To compare a variety of commercially available bone graft substitutes (BGS) in terms of promoting adherence, proliferation and differentiation of osteoprogenitor cells. Materials and methods. A fixed number of porcine mononuclear cells obtained from cancellous bone of the proximal femur was mixed with a standard volume of BGS and then cultured for one week in media followed by two weeks in osteogenic media. BGS included commercially available β-Tricalcium Phosphate (□-TCP), highly porous β-TCP, Hydroxyapatite/Tricalcium phosphate composite, calcium sulphate (CS), Hydroxyapatite (HA), Demineralised bone matrix (DBM), polygraft, and polymers (PGA, PLGA). Staining for live/dead cells as well as scanning electron microscopy (SEM) were carried out on all samples to determine viability and cellular binding. Further outcome measures included alkaline phosphatase assays with normalisation for DNA content to quantify osteogenic potential. Negative (BGS without cells) and positive (culture expanded osteoprogenitors) control experiments were carried out in parallel to validate the results. Results. Live/dead and SEM imaging showed higher cellular viability and attachment with β-TCP than with other BGS. In the experimental setup the average alkaline phosphatase activity in nmol/ml (normalised value for DNA content in nmol/μg DNA) per sample was 657.58 (132.03) for β-TCP, 36.22 (unable to normalise) for calcium sulphate, 19.93 (11.39) for the HA/ TCP composite, 14.79 (18.53) for polygraft, 13.98 (8.15) for the highly porous β-TCP, 5.56 (10.0) for PLGA, 3.82 (3.8) and for HA. It was not possible to analyse data for either DBM or PGA. Conclusion. Under theses experimental conditions, β-TCP has apparent favourable characteristics in terms of maintaining viability of osteoprogenitor cells and allowing proliferation and differentiation. Further work will be carried out to characterise the effect that BGS have on osteoprogenitor cells


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 48 - 48
1 Dec 2013
Detsch R Fey T Greil P Chen Q Boccaccini AR
Full Access

Biomaterials used in regenerative medicine should be able to support and promote the growth and repair of natural tissues. Bioactive glasses (BGs) have a great potential for applications in bone tissue engineering [1, 2]. As it is well known BGs can bond to host bone and stimulate bone cells toward osteogenesis. Silicate BGs, e.g. 45S5 Bioglass® (composition in wt.%: 45 SiO. 2. , 6 P. 2. O. 5. , 24, 5 Na. 2. O and 24.5 CaO), exhibit positive characteristics for bone engineering applications considering that reactions on the material surface induce the release of critical concentrations of soluble Si, Ca, P and Na ions, which can lead to the up regulation of different genes in osteoblastic cells, which in turn promote rapid bone formation. BGs are also increasingly investigated for their angiogenic properties. This presentation is focused on cell behavior of osteoblast-like cells and osteoclast-like cells on BGs with varying sample geometry (including dense discs for material evaluation and coatings of highly porous Al. 2. O. 3. -scaffolds as an example of load-bearing implants). To obtain mechanically competent porous samples with trabecular architecture analogous to those of cancellous bone, in this study Al. 2. O. 3. scaffolds were fabricated by the well-known foam replication method and coated with Bioglass® by dip coating. The resulted geometry and porosity were proven by SEM and μCT. Originating from peripheral blood mononuclear cells formed multinucleated giant cells, i.e. osteoclast-like cells, after 3 weeks of stimulation with RANKL and M-CSF. Thus, the bioactive glass surface can be considered a promising material for bone healing, providing a surface for bone remodeling. Osteoblast-like cells and bone marrow stromal cells were seeded on dense bioactive glass substrates and coatings showing an initial inhibited cell attachment but later a strong osteogenic differentiation. Additionally, cell attachment and differentiation studies were carried out by staining cytoskeleton and measuring specific alkaline phosphatase activity. In this context, 45S5 bioactive glass surfaces can be considered a highly promising material for bone tissue regeneration, providing very fast kinetics for bone-like hydroxyapatite formation (mineralization). Our examinations revealed good results in vitro for cell seeding efficacy, cell attachment, viability, proliferation and cell penetration onto dense and porous Bioglass®-coated scaffolds. Recent in vivo investigations [3] have revealed also the angiogenic potential of bioactive glass both in particulate form and as 3D scaffolds confirming the high potential of BGs for bone regeneration strategies at different scales. Implant surfaces based on bioactive glasses offer new opportunities to develop these advanced biomaterials for the next generation of implantable devices and tissue scaffolds with desired tissue-implant interaction


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 291 - 298
1 Mar 2014
Murray IR Corselli M Petrigliano FA Soo C Péault B

The ability of mesenchymal stem cells (MSCs) to differentiate in vitro into chondrocytes, osteocytes and myocytes holds great promise for tissue engineering. Skeletal defects are emerging as key targets for treatment using MSCs due to the high responsiveness of bone to interventions in animal models. Interest in MSCs has further expanded in recognition of their ability to release growth factors and to adjust immune responses.

Despite their increasing application in clinical trials, the origin and role of MSCs in the development, repair and regeneration of organs have remained unclear. Until recently, MSCs could only be isolated in a process that requires culture in a laboratory; these cells were being used for tissue engineering without understanding their native location and function. MSCs isolated in this indirect way have been used in clinical trials and remain the reference standard cellular substrate for musculoskeletal engineering. The therapeutic use of autologous MSCs is currently limited by the need for ex vivo expansion and by heterogeneity within MSC preparations. The recent discovery that the walls of blood vessels harbour native precursors of MSCs has led to their prospective identification and isolation. MSCs may therefore now be purified from dispensable tissues such as lipo-aspirate and returned for clinical use in sufficient quantity, negating the requirement for ex vivo expansion and a second surgical procedure.

In this annotation we provide an update on the recent developments in the understanding of the identity of MSCs within tissues and outline how this may affect their use in orthopaedic surgery in the future.

Cite this article: Bone Joint J 2014;96-B:291–8.


The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1022 - 1026
1 Aug 2013
O’Neill SC Queally JM Devitt BM Doran PP O’Byrne JM

Peri-prosthetic osteolysis and subsequent aseptic loosening is the most common reason for revising total hip replacements. Wear particles originating from the prosthetic components interact with multiple cell types in the peri-prosthetic region resulting in an inflammatory process that ultimately leads to peri-prosthetic bone loss. These cells include macrophages, osteoclasts, osteoblasts and fibroblasts. The majority of research in peri-prosthetic osteolysis has concentrated on the role played by osteoclasts and macrophages. The purpose of this review is to assess the role of the osteoblast in peri-prosthetic osteolysis.

In peri-prosthetic osteolysis, wear particles may affect osteoblasts and contribute to the osteolytic process by two mechanisms. First, particles and metallic ions have been shown to inhibit the osteoblast in terms of its ability to secrete mineralised bone matrix, by reducing calcium deposition, alkaline phosphatase activity and its ability to proliferate. Secondly, particles and metallic ions have been shown to stimulate osteoblasts to produce pro inflammatory mediators in vitro. In vivo, these mediators have the potential to attract pro-inflammatory cells to the peri-prosthetic area and stimulate osteoclasts to absorb bone. Further research is needed to fully define the role of the osteoblast in peri-prosthetic osteolysis and to explore its potential role as a therapeutic target in this condition.

Cite this article: Bone Joint J 2013;95-B:1021–5.