Primary bone tumors are rare, complex and highly heterogeneous. Its diagnostic and treatment are a challenge for the multidisciplinary team. Developments on tumor biomarkers, immunohistochemistry, histology, molecular, bioinformatics, and genetics are fundamental for an early diagnosis and identification of prognostic factors. The personalized medicine allows an effective patient tailored treatment. The bone biopsy is essential for diagnosis. Treatment may include systemic therapy and local therapy. Frequently, a limb salvage surgery includes wide resection and reconstruction with endoprosthesis, biological or composites. The risk for local recurrence and distant metastases depends on the primary tumor and treatment response. Cancer patients are living longer and bone metastases are increasing. Bone is the third most frequently location for distant lesions. Bone metastases are associated to pain, pathological fractures, functional impairment, and neurological deficits. It impacts survival and patient quality of life. The treatment of
Bone turnover and microdamage are impacted by skeletal metastases which can contribute to increased fracture risk. Treatments for
Abstract. Objectives. To analyse the costs and benefits of sending femoral head specimens for histopathological analysis and whether our practice had changed since the original study five years ago. Methods. The cohort definition was patients who had both undergone hip hemiarthroplasties (HHAs) and had femoral head specimens sent for histopathological analysis at our tertiary care institution from 2013 to 2016. Retrospective review of clinical and electronic notes was performed on these patients for history of malignancy, histopathological diagnosis of femoral head, indication for histopathological examination and radiological studies. The total number of HHAs performed at the centre and the costs involved in analysing each femoral head specimen were identified. Results. A total of 805 HHAs were performed at the centre. We identified 56 femoral head specimens from 56 patients (6.96%) that were sent for histopathological analysis after HHA. 29 patients (51.79%) had a known history of malignancy. Three femoral head specimens (10.34%) were histologically positive for malignancy. Two patients had hip radiographs demonstrating metastasis to the femoral head. The third patient had a PET-CT scan two weeks prior to fracture that did not show signs of
Metastatic osteosarcoma is seen in 10-20% of patients at initial presentation with the lung the most common site of metastasis. Historically, prognosis has been poor. We studied trends in survival in our small developed nation and aimed to identify correlations between the survival rate and three factors: newer chemotherapy, advances in radiological imaging and a more aggressive approach adopted by cardiothoracic surgeons for lung metastases. Our national bone tumour registry was used to identify patients at the age of 18 or under, who presented with
Demographics changes and the increasing incidence of metastatic bone disease are driving the significant issues of vertebral body (VB) fractures as an important consideration in the quality of life of the elderly. Whilst osteoporotic vertebral fractures have been widely studies both clinically and biomechanically, those fractures arising from metastatic infiltration in the spine are relatively poorly understood. Biomechanical in-vitro assessment of these structurally weaker specimens is an important methodology for gaining an understanding of the mechanics of such fractures in which a key aspect is the development of methodologies for predicting the failure load. Here we report on a method to predict the vertebral strength by combining computed tomography assessment with an engineering beam theory as an alternative to more complex finite element analyses and its verification within a laboratory scenario. Ninety-two human vertebral bodies with 3 different pathologies: osteoporosis, multiple myeloma (MM) and specimens containing cancer metastases were loaded using a define protocol and the failure loads recorded. Analysis of the resulting data demonstrated that the mean difference between predicted and experimental failure loads was 0.25kN, 0.41kN and 0.79 kN, with adjunct correlation coefficients of 0.93, 0.64 and 0.79 for osteoporotic, metastatic and MM VBs, respectively. Issues in predicting vertebral fracture arise from extra-vertebral bony formations which add to vertebral strength in osteoporotic VB but are structurally incompetent in
Summary. Metastatic spinal disease is a common entity of much debate in terms of ideal surgical treatment. The introduction of MIS can be a game-changer in the treatment of MSD due to less peri-operative morbidity and allowing earlier radiotherapy and/or chemotherapy. Introduction. Less invasive techniques have always been welcome for management of patients with ‘Metastatic Spinal Disorders’. This is because these patients can be poor candidates for extensive / major invasive surgery even though radiologically, there may be an indication for one. The aim of the treatment with Minimal Invasive Fixation (MIS) systems is mainly for ‘pain relief’ than to radically decrease tumour burden or to achieve near total spinal cord decompression, which could be major presentations in these patients. These procedures address the ‘spinal instability’ very well and they can address pain associated with compression fractures resulting from
The clinical utility of routine cross sectional imaging of the
abdomen and pelvis in the screening and surveillance of patients
with primary soft-tissue sarcoma of the extremities for metastatic
disease is controversial, based on its questionable yield paired
with concerns regarding the risks of radiation exposure, cost, and
morbidity resulting from false positive findings. Through retrospective review of 140 patients of all ages (mean
53 years; 2 to 88) diagnosed with soft-tissue sarcoma of the extremity
with a mean follow-up of 33 months (0 to 291), we sought to determine
the overall incidence of isolated abdominopelvic metastases, their
temporal relationship to chest involvement, the rate of false positives, and
to identify disparate rates of metastases based on sarcoma subtype.Objectives
Methods
We undertook a study of the anti-tumour effects of hyperthermia, delivered via magnetite cationic liposomes (MCLs), on local tumours and lung metastases in a mouse model of osteosarcoma. MCLs were injected into subcutaneous osteosarcomas (LM8) and subjected to an alternating magnetic field which induced a heating effect in MCLs. A control group of mice with tumours received MCLs but were not exposed to an AMF. A further group of mice with tumours were exposed to an AMF but had not been treated with MCLs. The distribution of MCLs and local and lung metastases was evaluated histologically. The weight and volume of local tumours and the number of lung metastases were determined. Expression of heat shock protein 70 was evaluated immunohistologically. Hyperthermia using MCLs effectively heated the targeted tumour to 45°C. The mean weight of the local tumour was significantly suppressed in the hyperthermia group (p = 0.013). The mice subjected to hyperthermia had significantly fewer lung metastases than the control mice (p = 0.005). Heat shock protein 70 was expressed in tumours treated with hyperthermia, but was not found in those tumours not exposed to hyperthermia. The results demonstrate a significant effect of hyperthermia on local tumours and reduces their potential to metastasise to the lung.
We used a canine intercalary bone defect model to determine the effects of recombinant human osteogenic protein 1 (rhOP-1) on allograft incorporation. The allograft was treated with an implant made up of rhOP-1 and type I collagen or with type I collagen alone. Radiographic analysis showed an increased volume of periosteal callus in both test groups compared with the control group at weeks 4, 6, 8 and 10. Mechanical testing after 12 weeks revealed increased maximal torque and stiffness in the rhOP-1 treated groups compared with the control group. These results indicate a benefit from the use of an rhOP-1 implant in the healing of bone allografts. The effect was independent of the position of the implant. There may be a beneficial clinical application for this treatment.
The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each vertebra in 25 human cadaver vertebrae. The dorsal vertebral cortex and subcortical bone corresponding to the entrance site of the screw were removed on one side and preserved on the other. Biomechanical testing showed that the mean peak pull-out strength for the inserted screws, following removal of the dorsal cortex, was 956.16 N. If the dorsal cortex was preserved, the mean peak pullout strength was 1295.64 N. The mean increase was 339.48 N (26.13%; p = 0.033). The bone mineral density correlated positively with peak pull-out strength. Preservation of the dorsal vertebral cortex at the site of insertion of the screw offers a significant increase in peak pull-out strength. This may result from engagement by the final screw threads in the denser bone of the dorsal cortex and the underlying subcortical area. Every effort should be made to preserve the dorsal vertebral cortex during insertion of transpedicular screws.