Advertisement for orthosearch.org.uk
Results 1 - 20 of 24
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 92 - 92
11 Apr 2023
O'Boyle M Fraser E Dickson S Mansbridge D
Full Access

Neck of femur fractures are a common trauma presentation and patients with a history of malignancy are sent for long leg femur views (LLF), to exclude a distal lesion which would alter the management plan (Intra-medullary nail/Long stem Hemiarthroplasty). The aim of this is to identify incidence of malignancy on LLF views, the length of time in between each xray (XR) and to identify demographics. Data was retrospectively collected from 01/01/2021 to 31/01/2021 from a single centre. All patients admitted to the Queen Elizabeth University Hospital had their electronic records (Bluespier, PACS, Clinical Portal) accessed. These confirmed if patients had a past medical history of malignancy, if they had LLF view and the time differences between diagnostic pelvis XR and LLF XR. A total of 784 patients were identified in the specified time period. Of these, 138 were identified with a malignancy and there were 85 LLF views completed. LLF views diagnosed 1 patient with known prostate cancer that had a new distal femoral metastasis (Incidence = 1.28 cases per 1000). This patient underwent further imaging (MRI Femur) and received a long stem hip hemiarthroplasty. The average length of wait between the images was 9 hours 27 minutes. LLF views can alter management of patients with malignancy and are therefore useful to perform. There can be a long delay between each image. Therefore we recommend imaging tumour with common bony metastasis (Renal, Thyroid, Breast, Prostrate, Lung) and other remaining tumours with known secondary metastasis. Imaging primary low risk (eg basal cell carcinoma) can lead to long delays in a frail patient cohort and consideration should be given to rationalise appropriate use of resources


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 5 - 5
1 Dec 2020
Ulucakoy C Atalay İB Yapar AE Ekşioğlu MF Kaptan AY Doğan M
Full Access

Purpose. Extraskeletal chondrosarcoma is a rare tumor with an indolent course and high propensity for local recurrence and metastasis. This tumor most commonly presents in the proximal extremities of middle-aged males, and is commonly asymptomatic. Although slow growing, these tumors have a significant risk of eventual relapse and metastases, especially to the lung. There are no clinical trials that investigated the best treatment options for this tumor given its very low incidence. The aim of this study is to present the surgical and clinical results of extraskeletal chondrosarcoma, which is a rare tumor. Methods. In our clinic, the information of 13 patients who were diagnosed with extra-skeletal chondrosarcoma between 2006 and 2018 were retrospectively reviewed. Demographic information, tumor size, surgical treatments, chemotherapy and radiotherapy status, follow-up times, recurrence and metastases of the patients were recorded. Results. This study included 13 patients with an average age of 53.6 ± 15 (range, 28 to 73) years diagnosed with extraskelatal chondrosarcoma. In 8 of the patients, the tumor was located in the lower limbs and it was observed that the thigh was located mostly (46.2%). The mean follow-up period of the patients was 52.8 ± 19.9 (range, 24 to 96) months. All patients underwent extensive resection and only one patient had a positive surgical margin. In the follow-up, 5 (38.5%) of the patients developed recurrence, while 6 patients had lung metastasis (46.2%) and 53.8% (7 patients) of the patients exitus. The mean tumor size was 10.4 ± 3.2 (range, 5 to 17) cm. The median survival time of the patients in the study was 61 (50.5–71.4) months. The 5-year survival rate is 51.8%. There was no significant difference between survival times according to age, gender, side, limb location, postoperative RT, recurrence and presence of lung metastasis (log rank tests p > 0.05). The cut off value for exitus obtained by ROC analysis of tumor size was determined as 11 cm (fig 1). Accordingly, the survival time of patients with 11 cm and above tumor size was observed to be statistically significantly shorter. Conclusion. Consequently, ECM is a rare soft tissue sarcoma with high local recurrence and metastasis capacity. Therefore, close follow-up is recommended. The first option should be extensive resection. Studies with large patient series on the prognostic factors of the future ECM are needed. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 43 - 43
2 Jan 2024
Lipreri M Cortini M Baldini N Avnet S
Full Access

Osteosarcoma is a highly malignant primary tumor of bone tissue. The 5-year survival rate of patients with metastasis is below 20% and this scenario is unchanged in the last two decades, despite great efforts in pre-clinical and clinical research. Traditional preclinical models of osteosarcoma do not consider the whole complexity of its microenvironment, leading to poor correlation between in vitro/in vivo results and clinical outcomes. Spheroids are a promising in vitro model to mimic osteosarcoma and perform drug-screening tests, as they (i) reproduce the microarchitecture of the tumor, (ii) are characterized by hypoxic regions and necrotic core as the in vivo tumor, (iii) and recapitulate the chemo-resistance phenomena. However, to date, the spheroid model is scarcely used in osteosarcoma research. Our aim is to develop a customized culture dish to grow and characterize spheroids and to perform advanced drug-screening tests. The resulting platform must be adapted to automated image acquisition systems, to overcome the drawbacks of commercial spheroids platforms. To this purpose, we designed and developed a micro-patterned culture dish by casting agarose on a 3D printed mold from a CAD design. We successfully obtained viable and reproducible homotypic osteosarcoma spheroids, with two different cells lines from osteosarcoma (i.e., 143b and MG-63). Using the platform, we performed viability assays and live fluorescent stainings (e.g., Calcein AM) with low reagent consumption. Moreover, the culture dish was validated as drug screening platform, administrating Doxorubicin at different doses, and evaluating its effect on OS spheroids, in terms of morphology and viability. This platform can be considered an attractive alternative to the highly expensive commercial spheroid platforms to obtain homogeneous and reproducible spheroids in a high-throughput and cost effective mode


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 36 - 36
2 Jan 2024
Bagur-Cardona S Perez-Romero K Stiliyanov K Calvo J Gayà A Barceló-Coblijn G Rodriguez RM Gomez-Florit M
Full Access

Macrophages (Mφ) are immune cells that play a crucial role in both innate and adaptive immunity as they are involved in a wide range of physiological and pathological processes. Depending on the microenvironment and signals present, Mφ can polarize into either M1 or M2 phenotypes, with M1 macrophages exhibiting pro-inflammatory and cytotoxic effects, while M2 macrophages having immunosuppressive and tissue repair properties. Macrophages have been shown to play key roles in the development and progression or inhibition of various diseases, including cancer. For example, macrophages can stimulate tumor progression by promoting immunosuppression, angiogenesis, invasion, and metastasis. This work aimed to investigate the effect of extracellular vesicles (EVs)-derived from polarized macrophages on an osteosarcoma cell line. Monocytes were extracted from buffy coats and cultured in RPMI medium with platelet lysate or M-CSF. After 6 days of seeding, Mφ were differentiated into M1 and M2 with INF-γ/LPS and IL-4/IL-13, respectively. The medium with M1 or M2 derived EVs was collected and EVs were isolated by differential centrifugation and size exclusion chromatography and its morphology and size were characterized with SEM and NTA, respectively. The presence of typical EVs markers (CD9, CD63) was assessed by Western Blot. Finally, EVs from M1 or M2-polarized Mφ were added onto osteosarcoma cell cultures and their effect on cell viability and cell cycle, proliferation, and gene expression was assessed. The EVs showed the typical shape, size and surface markers of EVs. Overall, we observed that osteosarcoma cells responded differentially to EVs isolated from the M1 and M2-polarized Mφ. In summary, the use of Mφ-derived EVs for the treatment of osteosarcoma and other cancers deserves further study as it could benefit from interesting traits of EVs such as low immunogenicity, nontoxicity, and ability to pass through tissue barriers. Acknowledgements: Carlos III Health Institute and the European Social Fund for contract CP21/00136 and project PI22/01686


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 26 - 26
1 Dec 2022
Salamanna F Contartese D Borsari V Griffoni C Brodano GB Gasbarrini A Fini M
Full Access

The Spine Surgery Unit of IRCCS Istituto Ortopedico Rizzoli is dedicated to the diagnosis and the treatment of vertebral pathologies of oncologic, degenerative, and post-traumatic origin. To achieve increasingly challenging goals, research has represented a further strength for Spinal Surgery Unit for several years. Thanks to the close synergy with the Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, extensive research was carried out. The addition of the research activities intensifies a complementary focus and provides a unique opportunity of innovation. The overall goal of spine research for the Spine Surgery Unit and for the Complex Structure Surgical Sciences and Technologies is and has been to:. - investigate the factors that influence normal spine function;. - engineer and validate new and advanced strategies for improving segmental spinal instrumentation, fusion augmentation and grafting;. - develop and characterize advanced and alternative preclinical models of vertebral bone metastasis to test drugs and innovative strategies, taking into account patient individual characteristics and specific tumour subtypes so predicting patient specific responses;. - evaluate the clinical characteristics, treatment modalities, and potential contributing and prognostic factors in patients with vertebral bone metastases;. - realize customized prosthesis to replace vertebral bodies affected by tumours or major traumatic events, specifically engineered to reduce infections, and increase patients’ surgical options. These efforts have made possible to obtain important results that favour the translation of basic research to application at the patient's bedside, and from here to routine clinical practice (without excluding the opposite pathway, in which the evidence generated by clinical practice helps to guide research). Although translational research can provide patients with valuable therapeutic resources, it is not risk-free. Thus, it is therefore necessary an always close collaboration between researchers and clinicians in order to guarantee the ethicality of translational research, by promoting the good of individuals and minimising the risks


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 37 - 37
1 Dec 2022
Contartese D Salamanna F Borsari V Pagani S Sartori M Martini L Brodano GB Gasbarrini A Fini M
Full Access

Breast cancer is the most frequent malignancy in women with an estimation of 2.1 million new diagnoses in 2018. Even though primary tumours are usually efficiently removed by surgery, 20–40% of patients will develop metastases in distant organs. Bone is one of the most frequent site of metastases from advanced breast cancer, accounting from 55 to 58% of all metastases. Currently, none of the therapeutic strategies used to manage breast cancer bone metastasis are really curative. Tailoring a suitable model to study and evaluate the disease pathophysiology and novel advanced therapies is one of the major challenges that will predict more effectively and efficiently the clinical response. Preclinical traditional models have been largely used as they can provide standardization and simplicity, moreover, further advancements have been made with 3D cultures, by spheroids and artificial matrices, patient derived xenografts and microfluidics. Despite these models recapitulate numerous aspects of tumour complexity, they do not completely mimic the clinical native microenvironment. Thus, to fulfil this need, in our study we developed a new, advanced and alternative model of human breast cancer bone metastasis as potential biologic assay for cancer research. The study involved breast cancer bone metastasis samples obtained from three female patients undergoing wide spinal decompression and stabilization through a posterior approach. Samples were cultured in a TubeSpin Bioreactor on a rolling apparatus under hypoxic conditions at time 0 and for up to 40 days and evaluated for viability by the Alamar Blue test, gene expression profile, histology and immunohistochemistry. Results showed the maintenance and preservation, at time 0 and after 40 days of culture, of the tissue viability, biological activity, as well as molecular markers, i.e. several key genes involved in the complex interactions between the tumour cells and bone able to drive cancer progression, cancer aggressiveness and metastasis to bone. A good tis sue morphological and microarchitectural preservation with the presence of lacunar osteolysis, fragmented trabeculae locally surrounded by osteoclast cells and malignant cells and an intense infiltration by tumour cells in bone marrow compartment in all examined samples. Histomorphometrical data on the levels of bone resorption and bone apposition parameters remained constant between T0 and T40 for all analysed patients. Additionally, immunohistochemistry showed homogeneous expression and location of CDH1, CDH2, KRT8, KRT18, Ki67, CASP3, ESR1, CD8 and CD68 between T0 and T40, thus further confirming the invasive behaviour of breast cancer cells and indicating the maintaining of the metastatic microenvironment. The novel tissue culture, set-up in this study, has significant advantages in comparison to the pre-existent 3D models: the tumour environment is the same of the clinical scenario, including all cell types as well as the native extracellular matrix; it can be quickly set-up employing only small samples of breast cancer bone metastasis tissue in a simple, ethically correct and cost-effective manner; it bypasses and/or decreases the necessity to use more complex preclinical model, thus reducing the ethical burden following the guiding principles aimed at replacing/reducing/refining (3R) animal use and their suffering for scientific purposes; it can allow the study of the interactions within the breast cancer bone metastasis tissue over a relatively long period of up to 40 days, preserving the tumour morphology and architecture and allowing also the evaluation of different biological factors, parameters and activities. Therefore, the study provides for the first time the feasibility and rationale for the use of a human-derived advanced alternative model for cancer research and testing of drugs and innovative strategies, taking into account patient individual characteristics and specific tumour subtypes so predicting patient specific responses


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 66 - 66
1 Mar 2021
Bong GSY Browne TJ Morrissey D
Full Access

Abstract. Objectives. To analyse the costs and benefits of sending femoral head specimens for histopathological analysis and whether our practice had changed since the original study five years ago. Methods. The cohort definition was patients who had both undergone hip hemiarthroplasties (HHAs) and had femoral head specimens sent for histopathological analysis at our tertiary care institution from 2013 to 2016. Retrospective review of clinical and electronic notes was performed on these patients for history of malignancy, histopathological diagnosis of femoral head, indication for histopathological examination and radiological studies. The total number of HHAs performed at the centre and the costs involved in analysing each femoral head specimen were identified. Results. A total of 805 HHAs were performed at the centre. We identified 56 femoral head specimens from 56 patients (6.96%) that were sent for histopathological analysis after HHA. 29 patients (51.79%) had a known history of malignancy. Three femoral head specimens (10.34%) were histologically positive for malignancy. Two patients had hip radiographs demonstrating metastasis to the femoral head. The third patient had a PET-CT scan two weeks prior to fracture that did not show signs of metastatic disease. 27 patients (48.21%) had no history of malignancy. None of their femoral head specimens were found to be histologically positive for malignancy. 10 patients had no appropriate indication for histopathological analysis. The cost savings for 27 patients with no previous history of malignancy ranged from €2,295 to €9,504. The cost savings for 10 patients with no appropriate indication ranged from €850 to €3,520. Conclusions. Histopathological analysis of femoral head specimens after HHA has little benefit for patients without a history of malignancy. The practice at our institution had not changed significantly in the past five years. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 313 - 313
1 Jul 2014
Tan J Lim J Chen Y Kumar N
Full Access

Summary. Neurological deficits resulting from spinal cord compression occur infrequently. When presented with neurological compromise, the most common management was radiotherapy, with surgery only being offered to patients who developed neurological deficit or pathological fracture resulting in unresolved severe pain post radiotherapy. Introduction. Nasopharyngeal carcinoma has been reported to have a higher incidence of distant metastases to the spine. This study was conducted to evaluate the incidence, presentation and management of neurological involvement related to spinal metastasis from nasopharyngeal carcinoma. Patients and Methods. 814 patients with the diagnosis of NPC who presented to the National University Hospital (NUH), Singapore, over a 5-year period (2007–2011) were recruited for this study. Case records from clinics, wards, operating theatres at NUH and nationwide electronic records of polyclinics and Emergency Medical Department (EMD) were obtained and reviewed. The data collected included demographics, medical history, radiologic and histopathology reports. Results. Of 814 patients with NPC, 99 had spinal metastasis. 26 were treated with radiotherapy, 25 with chemotherapy, 5 with both chemo and radiotherapy and 6 with surgery. Out of 6 patients requiring spinal surgical procedure, 3 had neurological deficits in the form of focal sensory or motor deficits and 4 had symptoms of pathologic fracture. One patient had both neurological deficit and pathological fracture. All these 6 patients were treated with a spinal surgical procedure of stabilization and/or decompression. Discussion/Conclusion. Spinal metastasis is common in patients with NPC and back pain is the usual presentation. Neurological deficits resulting from nerve root or spinal cord compression occur infrequently. When presented with neurological compromise, the most common management was radiotherapy, with surgery only being offered to patients who developed neurological deficit or pathological fracture resulting in unresolved severe pain post radiotherapy


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 110 - 110
1 Jul 2014
Yu Y Ibrahim N Yang J Walsh WR
Full Access

Summary Statement. Combination of sorafenib with irradiation achieved synergistic effect with dose reduction in both 143B and HOS cell lines. This demonstrated the potential application of sorafenib in the treatment of osteosarcoma metastasis and radiation resistance. Introduction. More than 20% of patients with osteosarcoma die of the disease within 5 years due to tumour relapse and metastasis. Identifying new treatment that works singly or in combination with conventional therapies is urgently required. We previously found that the Ras/Raf/MAPK pathway was associated with lung metastasis in a 143B inoculated osteosarcoma orthotopic mouse model. 1. Sorafenib, a multi-kinase inhibitor, has shown potent anticancer effect including in osteosarcoma. 2. through the inhibition of Raf-1 and other targets. 3. The aims of this study were to investigate effect of sorafenib on osteosarcoma cell lines with or without activated Ras/Raf/MAPK signalling and to decide whether sorafenib could enhance irradiation on these cells. Materials and Methods. Osteosarcoma cell lines 143B (HOS with Ras gene transfection), HOS and U2OS were used. Clonogenic assay was applied for assessing tumour growth and colony formation with or without treatment. Sorefenib was provided by Bayer gratis. Irradiation was performed using the Therapax DXT300 Orthovoltage Radiation System (Pantak, Connecticut, USA). Three doses of sorafenib (1, 2, 4 ug/ml) and three doses of radiation (50, 100, 200 cGy) were used with vehicle controls. In the combination therapy sorafenib was given at pre-, concurrent and post-irradiation. Each treatment was duplicated with the experiment being repeated once. Results. Sorafenib monotherapy achieved 50% inhibition (EC50) effects in all three tested cell lines with 7.05 ug/ml for 143B, 1.59 for HOS and 2.41 for U2OS. The 143B cell line was seriously resistant to irradiation with EC50 of 167 Gy, whilst other cell lines were relatively sensitive (HOS, 1.5 Gy and U2OS, 1.0 Gy). Combination of sorafenib with irradiation achieved synergistic effect with dose reduction in both 143B and HOS cell lines, but no obvious effect in U2OS cells. Discussion. Sorafenib demonstrated inhibitory effects on cell growth and colony formation even in a Ras/Raf/MAPK signalling activated osteosarcoma cell line, suggesting its potential application in the treatment of some metastatic osteosarcoma. Activated Ras/Raf/MAPK signalling is one of the mechanisms of radiation resistance and the synergistic effect of soratenib with irradiation combination therapy in this cell population indicated it's potential application in the treatment of irradiation resistant osteosarcoma. The dose reduction achieved by this combination could benefit patients with less specific side effects


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 44 - 44
1 Nov 2018
Baldini N
Full Access

The initiation and progression of malignant tumors are supported by their microenvironment: cancer cells per se cannot explain growth and formation of the primary or metastasis, and a combination of proliferating tumor cells, cancer stem cells, immune cells, mesenchymal stromal cells and/or cancer-associated fibroblasts all contribute to the tumor bulk. The interaction between these multiple players, under different microenvironmental conditions of biochemical and physical stimuli (i.e. oxygen tension, pH, matrix mechanics), regulates the production and biological activity of several soluble factors, extracellular matrix components, and extracellular vesicles that are needed for growth, maintenance, chemoresistance and metastatization of cancer. Both in osteosarcoma and bone metastases from carcinomas this aspect has been only recently explored. In this lecture, I will discuss the role of tumor microenvironment, with a particular focus on the mesenchymal stroma, contributing to bone tumor progression through inherent. The most recent advances in the molecular cues triggered by cytokines, soluble factors, and metabolites that are partially beginning to unravel the axis between stromal elements of mesenchymal origin and bone cancer cells, under different microenvironmental conditions, will be reviewed providing insights likely to be used for novel therapeutic approaches


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 309 - 309
1 Jul 2014
Chen Y Tai B Nayak D Kumar N Goy R Wong H
Full Access

Summary. Our meta-analysis showed that pooled mean blood loss during spinal tumour surgeries was 2180 ml. Standardised methods of calculating and reporting intra-operative blood loss are needed as it would be beneficial in the pre-operative planning of blood replenishment during surgery. Introduction. The vertebral column is the commonest site of bony metastasis, accounting for 18,000 new cases in North America yearly. Patients with spinal metastasis are often elderly, have compromised cardiovascular status, poor physiological reserve and altered immune status, all of which render them more susceptible to the complications of intra-operative blood loss and associated transfusion. Currently no consensus exists regarding the expected volume of blood lost during metastatic spine tumour surgery with various papers quoting anywhere between 1L to 6L. Knowledge of the expected blood loss prior to surgery however is important as it facilitates pre-operative planning, intra- and post-operative management of fluid balance and blood transfusion. We conducted a meta-analysis of published literature on spine tumour surgery to answer the question: “What is the expected blood loss in major spinal tumour surgery for metastatic spinal disease?”. Methods. A comprehensive online search of the English literature using Medline, Embase, and the Cochrane Central Register of Controlled Trials was performed. We included articles published from 31 January 1992 until 31 January 2012. This initial online search yielded 98 relevant articles. Two senior investigators independently reviewed all abstracts. The full text of articles that were deemed eligible for further consideration obtained and reviewed. Eighty five articles were excluded at this stage, largely due to lack of clear blood loss data, leaving 13 eligible articles. A hand search of the reference lists of relevant articles yielded 5 more articles. A total of 18 articles were included in the final meta-analysis of blood loss data. Disagreements regarding eligibility of articles for analysis were resolved by consensus. Selected articles for final analysis were independently graded according to the Centre for Evidence-Based Medicine (CEBM) Levels of Evidence. We evaluated the possibility of publication bias by obtaining a funnel plot (created by plotting the sample size against the effect estimate). The Egger's regression asymmetry test was used to assess the existence of publication bias. Results. Eighteen selected articles had a total of 785 patients who had undergone major spine tumour surgery for metastatic spinal disorders. The pooled estimate of the blood loss occurring during spinal tumour surgeries was calculated to be 2180ml (95%CI: 1805–2554ml). Apart from two studies which reported significant mean blood loss of more than 5500 ml, the resulting funnel plot suggested absence of publication bias. This was confirmed by Egger's test which did not show any small-study effects (p=0.119). However, there was strong evidence of heterogeneity between studies with I2=90% (p<0.001). Conclusions. The expected blood loss of a patient undergoing major surgery for spinal tumour constitutes more than a third of the circulating blood volume in a typical cancer patient with significantly impaired physiological reserve. Moreover, cases of catastrophic blood loss exceeding 5L exist in almost every series evaluated in this paper, with some reaching as much as 17–18L. Blood loss is a significant problem during spine tumour surgery and concerted effort is needed to address it


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 54 - 54
1 May 2017
Roberton A Walker R Perera S Shah Z Bankes M George M
Full Access

Background. A dedicated referral pathway for patients with bony metastases was introduced at Guy's and St Thomas’ Hospitals (GSTT) in 2009. The aim was to facilitate prompt, consultant-led decision-making and intervention for patients at risk of pathological fracture of long bones. Methods. We performed a clinical audit and service evaluation of the referral pathway through retrospective review of referrals over 3.5 years. Results. 75 patients referred from 7 different specialties, (34:41 male:female), mean age 64. 16 different types of primary cancer identified, the most common being breast (22/75). Location of metastasis was most commonly the femur (59/75). 24 patients underwent surgery, with femoral nail the most common procedure (13/24). Patients in the surgery group were younger, with higher Mirel's score, less visceral metastases and survived longer after surgery than patients treated non-operatively. Median referral-clinic time was 10 days and referral-surgery time was 14 days. Conclusions. Our data demonstrate the importance of this service and the growing demand. We have updated trust guidelines and improved our referral process through GSTT's Electronic Patient Record system. We have presented this data at local level to improve awareness and intend to reduce referral-clinical review time and have recently established a multidisciplinary meeting to improve patient outcome. Level of Evidence. 3


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 105 - 105
1 Jan 2017
Cortini M Avnet S Massa A Baldini N
Full Access

Osteosarcoma (OS) is an aggressive bone malignancy with a high relapse rate despite combined treatment with surgery and multiagent chemotherapy. As for other cancers, OS-associated microenvironment may contribute to tumor initiation, growth, and metastasis. We consider mesenchymal stromal cells (MSC) as a relevant cellular component of OS microenvironment, and have previously found that the interaction between MSC and tumor cells is bidirectional: tumor cells can modulate their peripheral environment that in turn becomes more favourable to tumor growth through metabolic reprogramming (1). Stem-like cells were derived from HOS osteosarcoma cell line by using the spherogenic system (2). CSC isolated from HOS (HOS-CSC) were co-coltured with MSC isolated from bone marrow. Cell lysates and supernatants were collected for the analysis of RNA expression and of secreted cytokines, by Q-RT-PCR and specific ELISA assays, respectively. Here, we determined the effects of MSC on OS stemness and migration, two major features associated with recurrence and chemoresistance. Recruitment of MSC to the tumor environment leads to enhanced proliferation of OS stem cells, which increase the expression levels of TGFβ1. The latter, in turn, could be responsible for the activation of NF-kB genes and IL-6 secretion by MSC. Pro-tumorigenic effects of MSC, via IL-6, including induction of HOS-CSC migration and sphere growth, can be counteracted by IL-6 neutralizing antibody. The presence of MSC is also responsible for increased expression of adhesion molecules involved in intra- or extra-vasation. Stromal cells in combination with OS spheres exploit a vicious cycle where the presence of CSC stimulates mesenchymal cytokine secretion, which in turn increases stemness, proliferation, migration, and metastatic potential of CSC. Furthermore, for the first time we identified a novel OS stem cell marker, the Met proto-oncogene, that is frequently overexpressed and is pathogenetically relevant in OS (2 and 3). Altogether, our data corroborates the concept that a comprehensive knowledge of the interplay between tumor and stroma that also includes the stem-like fraction of tumor cells is needed to develop novel and effective anti-cancer therapies


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 124 - 124
1 Jan 2017
Sakane M Tsukanishi T Funayama T Onishi S Ozeki E Hara I Yamazaki M
Full Access

Photodynamic therapy (PDT) uses the strong cytotoxicity of singlet oxygen and hyperthermia produced by irradiating excitation light on a photosensitizer. The phototoxic effects of indocyanine green (ICG) and near-infrared light (NIR) have been studied in different types of cancer cells. Plasma proteins bind strongly to ICG, followed by rapid clearance by the liver, resulting in no tumor-selective accumulation after systemic administration. Kimura et al. have proposed using a novel nanoparticle labeled with ICG (ICG-lactosome) that has tumor selective accumulation owing to enhanced permeability and retention (EPR) effect. In this study, we investigated the efficacy of PDT using ICG-lactosome and NIR for a bone metastatic mouse model of breast cancer. Cells from the human breast cancer cell line, MDA-MB-231 were injected into the right tibia of 26 anesthetized BALB/C nu/nu mice at a concentration. The mice were then randomly divided into three groups: the PDT group (n = 9), the laser (laser irradiation only) group (n = 9), and the control group (n = 8). PDT was performed thrice (7, 21, 35 days after cell inoculation) following ICG-lactosome administration via the tail vein 24 hours before irradiation. The mice were percutaneously irradiated with an 810-nm medical diode laser for 10 min. In the laser group, mice were irradiated following saline administration 24 hours before irradiation. Radiographic analysis was performed for 49 days after cell inoculation. The area of osteolytic lesion was quantified. The right hind legs of 3 mice were amputated 24 hours after the third treatment. Histological analysis was performed using hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining of sagittal sections. The data was analyzed using Tukey-Kramer post-hoc test. P-value of <0.05 was considered significant. X-ray on day 49 of the three groups are considered. The area of osteolytic lesion in the PDT group (7.9 ± 1.2 mm. 2. : mean ± SD) was significantly smaller than that of the control (11.4 ± 1.4 mm. 2. ) and laser (11.9 ± 1.2 mm. 2. ) groups. In histological findings, we observed many TUNEL-positive cells in the metastatic tissue 24 hours after PDT. In the control and laser groups, TUNEL-positive cells were occasionally observed. We have previously reported the effect of ICG-lactosome-enhanced PDT on the cytotoxicity of human breast cancer cells in vitroand on the delay of paralysis in a rat spinal metastasis model. In this study, we demonstrated the inhibitory effect of ICG-lactosome-enhanced PDT on bone destruction caused by human breast cancer cells in vivo. This PDT induced apoptosis and necrosis in the tumor cells. Intralesional resection is often performed for spinal metastases in an emergency. The residual tumor may regrow and cause neurological deficits. We believe that ICG-lactosome-enhanced PDT can decrease the rate of local recurrence through reduction of the residual tumor. PDT with ICG-lactosome and NIR had an inhibitory effect on the growth of bone metastasis of a human breast cancer


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 104 - 104
1 Jul 2014
Sollazzo V
Full Access

Summary Statement. In this study we suggested a possible role of prion proteins genes in osteosarcoma. Therefore, the inhibition of prion proteins expression must be tested because it could represent a new approach to the molecular treatment of osteosarcoma. Introduction. Although osteosarcoma is the most common bone malignancy, the molecular and cellular mechanisms influencing its pathogenesis have remained elusive. Prion proteins (PRNP and PRND), known mostly for its involvement in neurodegenerative spongiform encephalopathies, have been recently demonstrated to be involved in resistance to apoptosis, tumorigenesis, proliferation and metastasis. Patients & Methods. The main aim of research was to study whether prion proteins were over-expressed in human osteosarcoma, and if prion proteins could have a role also in osteosarcomas. We evaluated differential gene expression between 22 cases of osteosarcoma and 40 cases of normal bone specimens through cDNA microarray analysis spanning a substantial fraction of the human genome. Results. PRNP and PRND are significantly over-expressed in osteosarcoma. PRNP and PRND appear involved with some important genes related to tumorigenesis and apoptosis. PRNP is linked to PTK2, RBBP9 and TGFB1 while PRND is linked to TNFSF10, BCL2A1, NFKB2 and TP53RK. Discussion/Conclusion. Increased expression on Affymetrix arrays of prion proteins seems to be associated with the development of osteosarcoma. Prions seem to induce a negative regulation of apoptosis, thus promoting osteosarcoma development and progression. Osteosarcoma is a very aggressive tumor and even after modern chemotherapy and excision of tumors efforts are needed to improve clinical outcome. Since Prion proteins seem to be related to osteosarcoma development, their inhibition could represent a new approach to the molecular treatment of osteosarcoma


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 17 - 17
1 Jun 2012
Thomson W Porter D Demosthenous N Elton R Reid R Wallace W
Full Access

Metastatic osteosarcoma is seen in 10-20% of patients at initial presentation with the lung the most common site of metastasis. Historically, prognosis has been poor. We studied trends in survival in our small developed nation and aimed to identify correlations between the survival rate and three factors: newer chemotherapy, advances in radiological imaging and a more aggressive approach adopted by cardiothoracic surgeons for lung metastases. Our national bone tumour registry was used to identify patients at the age of 18 or under, who presented with metastatic disease at initial diagnosis between 1933 and 2006. There were 30 patients identified. Kaplan-Meier analysis was used to determine survival rates and univariate analysis was performed using the Cox regression proportional hazards model. Median survival has improved over the last 50 years; highlighted by the ‘Kotz’ eras demonstrating incremental improvement with more effective chemotherapy agents (p=0.004), and a current 5-year survival of 16%. Aggressive primary and metastatic surgery also show improving trends in survival. Three patients have survived beyond 5 years. The introduction of computerised tomography scanning has led to an increase in the prevalence of metastases at initial diagnosis. Metastatic osteosarcoma remains with a very poor prognostic factor, however, aggressive management has been shown to prolong survival


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 311 - 311
1 Jul 2014
Kumar N Chen Y Zaw A Ahmed Q Soong R Nayak D Wong H
Full Access

Summary. There is emerging evidence of successful application of IOCS and leucocyte depletion filter in removing tumour cells from blood salvaged during various oncological surgeries. Research on the use of IOCS-LDF in MSTS is urgently needed. Introduction. Intra-operative cell salvage (IOCS) can reduce allogeneic blood transfusion requirements in non-tumour related spinal surgery. However, IOCS is deemed contraindicated in metastatic spine tumor surgery (MSTS) due to risk of tumour dissemination. Evidence is emerging from different surgical specialties describing the use of IOCS in cancer surgery. We wanted to investigate if IOCS is really contraindicated in MSTS. We hereby present a systematic literature review to answer the following questions: 1. Has IOCS ever been used in MSTS? 2. Is there any evidence to support the use of IOCS in other oncologic surgeries?. Methods. A systematic review of the English literature was conducted using computer searching of databases: Medline, Embase, the Cochrane Central Register of Controlled Trials for articles published between 1 January 1986 and 31 Dec 2012. Results. Question 1: A comprehensive literature search did not provide any publication describing the use of IOCS in MSTS. The application of IOCS in MSTS has never been described before. Question 2: Our systematic review shows that the use of IOCS has been extensively investigated in patients undergoing surgery for gynaecological, lung, urological, gastrointestinal, and hepatobiliary cancers. The literature review considered 281 abstracts from the initial search. After consideration by consensus, 30 articles were included in the final analysis. We included in our review -prospective, retrospective studies and in vitro studies. The selected articles were then classified according to the surgical specialty: gynaecological, lung, urological, gastrointestinal, and hepatobiliary cancers and type of studies: reinfusion studies, non-reinfusion studies and in vitro studies. 23 Reinfusion studies: Studies where salvaged blood was actually re-infused into patients and analyzed on the basis of clinical outcomes like survival, recurrence, metastasis rates, and transfusion requirements, etc. IOCS has been extensively investigated in several large cohort studies and large case series with considerable follow-up duration across urological, gynaecological, hepatobiliary and gastrointestinal cancers. Patients receiving salvaged blood have been shown to perform as well or better across a variety of clinical outcome measures as mentioned above. 2 in vitro studies and 5 non-reinfusion studies: Studies where salvaged blood was not re-infused into patients but was analyzed for the presence or viability of tumour cells in the processed blood. They consistently demonstrated the utility of LDF in either greatly reducing the number of tumour cells or even completely eradicating tumour cells from blood-tumour admixtures or salvaged blood. This provides the “proof-of-concept” that LDF is able and is effective in removing tumour cells from blood. Discussion/Conclusion. There is strong evidence that LDF can safely remove tumour cells from salvaged blood. IOCS in patients undergoing cancer surgery is not associated with any adverse clinical outcomes. The reluctance of spine surgeons to use IOCS in MSTS appears to be unsupported. There is ample evidence supporting the use of IOCS in oncological surgeries. Research is needed to evaluate the application of IOCS in MSTS


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 310 - 310
1 Jul 2014
Kumar N Chen Y Ahmed Q Lee V Wong H
Full Access

Summary. This is the first ever study to report the successful elimination of malignant cells from salvaged blood obtained during metastatic spine tumour surgery using a leucocyte depletion filter. Introduction. Catastrophic bleeding is a significant problem in metastatic spine tumour surgery (MSTS). However, intaoperative cell salvage (IOCS) has traditionally been contraindicated in tumour surgery because of the theoretical concern of promoting tumour dissemination by re-infusing tumour cells into the circulation. Although IOCS has been extensively investigated in patients undergoing surgery for gynaecological, lung, urological, gastrointestinal, and hepatobiliary cancers, to date, there is no prior report of the use of IOCS in MSTS. We conducted a prospective observational study to evaluate whether LDF can eliminate tumour cells from blood salvaged during MSTS. Patients & Methods. After Institutional Review Board (IRB) approval, 21 consecutive patients with metastatic spinal tumours from a known epithelial primary (defined as originating from breast, prostate, thyroid, renal, colorectal, lung, nasopharyngeal) who were scheduled for MSTS were recruited with informed consent. During surgery, a IOCS device (Dideco, Sorin Group, Italy) was used to collect shed blood from the operative field. Salvaged blood was then passed through a leucocyte depletion filter (RS1VAE, Pall Corporation, UK). 15-ml specimens of blood were taken from each of three consecutive stages: (i) operative field prior to cell saver processing (Stage A); (ii) transfusion bag post-cell saver processing (Stage B); (iii) filtered blood after passage through LDF (Stage C). Cell blocks were prepared by the pathology department using a standardised laboratory protocol. From each cell block, 1 haematoxylin and eosin (H&E) slide, and 3 slides each labelled with one of the following monoclonal mouse cytokeratin antibodies AE1/3, MNF 116 and CAM 5.2 were prepared. The cytokeratin antibodies are highly sensitive and specific markers to identify tumour cells of epithelial origin. These slides were read by one of two consultant pathologists who were provided full access to information on operative notes, but were blinded to the actual stages from which the slides were derived. Results. One case was excluded when the final diagnosis was revised to infection instead of metastatic spine tumour. Of the remaining cases, 7/21 tested positive for tumour cells in Stage A, 2 positive in Stage B. No specimen tested positive for tumour cells in Stage C. In 5 cases, posterior instrumentation without tumour manipulation was performed. Discussion/Conclusion. In this first-ever study of cell saver use in spine tumour surgery, we prove that leucocyte-depletion filters (LDF) can effectively eliminate tumour cells from blood salvaged during MSTS. It is now possible to conduct a clinical trial to evaluate IOCS-LDF use in MSTS. Our results are consistent with published results of similar studies performed on IOCS and LDF use outside the field of orthopaedic surgery. Spinal metastases originate from a myriad of primary cancers across various organ systems. If LDF can remove tumour cells from blood salvaged during surgery for spinal metastasis of different histological origin, then the finding can likely be extrapolated to several other fields of surgery where IOCS and LDF have not yet been attempted such as: neurosurgery, otolaryngology and general musculoskeletal oncology. Our results form a proof-of-concept for a paradigm shift in thinking regarding autotransfusion during spine tumour surgery


Bone & Joint Research
Vol. 5, Issue 12 | Pages 610 - 618
1 Dec 2016
Abubakar AA Noordin MM Azmi TI Kaka U Loqman MY

In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine.

Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 137 - 143
1 Mar 2017
Cho HS Park YK Gupta S Yoon C Han I Kim H Choi H Hong J

Objectives

We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model.

Methods

We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice.