Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 246 - 246
1 Sep 2012
Paringe V Kate S Mark B
Full Access

Introduction. As modern day lifestyle is becoming more active so is the incidence of meniscal injuries on rise. An injury to the meniscus is a common orthopedic problem with the incidence of meniscal injury resulting in meniscectomy of 61 per 100,000 populations per year. The common practice in diagnosis of the meniscal injury involves clinical examination followed by radiological or arthroscopic confirmation. The clinical tests commonly performed are joint line tenderness (JLT), McMurray's Test (Non-weight bearing test) and Childress Test (Weight Bearing Test). Aim. In our study, we performed the comparative analysis of the validity parameters for components of clinical examination in form of Joint line tenderness, McMurray's test and Childress Test. Methodology. A retrospective analysis was performed on the database established using Orchard Sports Injury Classification System-8. Codes KC2 and KC3 (Meniscal injuries) were identified for single examiner for duration from 2004–2007. Out of 88 patients considered for the study, 62 patients were stratified in whom only clinical examination was performed followed by arthroscopic evaluation. The validity parameters considered were accuracy, specificity, sensitivity, positive predictive value (PPV) and negative predictive value (NPV). Results. Joint line tenderness had accuracy of 85.47%, sensitivity of 89.09%, and specificity of 57.14%, PPV of 94.23% and NPV of 40%. McMurray's test yielded a accuracy of 88.7%, sensitivity of 89.65%, specificity of 75%, PPV of 98.11%, NPV of 33.33% while Childress test accurately predicted meniscal injury 87.09% and was sensitive for 94.73% with specificity of 40%, PPV of 94.73% and NPV of 40%. Conclusion. We can summarise that though the JLT, McMurray's Test and Childress Test provide a variable yet effective diagnostic value, all through can provide a composite diagnostic yield improving the outcome of clinical examination in meniscal injuries


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 247 - 247
1 Sep 2012
Paringe V Strachan K Batt M
Full Access

Introduction. Meniscal injuries are very common cause of knee pain and resultant attendance to the orthopaedics or sports medicine clinics. The current protocol stands at clinical examination at first contact and establishing a diagnosis with clinical indicators like joint line tenderness, McMurray's, Apley's and weight-bearing test for meniscal pathology followed by MRI scan to confirm the diagnosis. Either surgical or conservative management follows this. We aim to assess clinical examination alone provide sufficient evidence for further management of meniscal injury and does a role of MRI scan exist to corroborate the findings. Methodology. We retrospectively studied 88 patients attending the sports medicine clinic for the duration 2004–2007 examined by senior clinical assessor. We investigated the co-relation of the clinical and MRI findings to validate if there exists an actual clinical justification to use MRI scan in every patient. We divided the data in further subsets of 57 patients in whom both clinical examination and MRI scan were performed and were validated by arthroscopy. The data obtained was analysed for parameters of accuracy, sensitivity, specificity, positive predictive value [PPV] and negative predictive value [NPV]. Results. The comparison of clinical examination against MRI scans alone in 88 patients provided a accuracy of 81.81%, sensitivity of 95.77% and specificity of 23.52%. The assessment revealed that clinical examination yielded accuracy of 89.47%, sensitivity of 96%, specificity of 42 %, PPV of 92%, NPV of 60% while MRI scan was 87.70% accurate, 86% sensitive, with specificity of 100%, PPV of 100%, NPV of 57.14%. Conclusion. From the results yielded by the study we can conclude that in experienced hands the clinical examination is as robust as MRI scan for meniscal injury of knee and can negate the need for MRI scan to be performed in every painful knee with suspicious meniscal injury


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 2 - 2
1 Jul 2020
Page J Kerslake S Buchko GML Heard SM Hiemstra LA Kopka M
Full Access

Anterior cruciate ligament (ACL) rupture with associated meniscal pathology commonly occurs in a young, active population. Preserving a greater proportion of the meniscus may improve long-term outcomes by maintaining shock absorption and knee stability. However, meniscal repair procedures involve longer healing and rehabilitation than meniscal debridement, which could affect return to work and activity. The purpose of this study was to examine the functional outcomes and quality of life scores through two years in patients undergoing ACL reconstruction (ACL-R) who had meniscal repair, meniscal debridement, or no meniscal damage at the time of reconstruction. Data for 1814 skeletally mature patients with isolated primary ACL-R was prospectively collected at a single centre from January 2010 to December 2015. Functional testing of operative to non-operative limb performance was completed at one- and two-years following surgery and included single-leg balance, single-leg hop for distance, timed six-meter hop, triple-hop for distance, and triple cross-over hop for distance. ACL-Quality-of-life questionnaires (ACL-QoL) were completed pre-operatively and at 1- and 2-years post-operatively. Descriptive statistics were completed for patient demographics and intra-operative pathology. Unpaired t-tests using 95% confidence intervals were conducted to compare groups. The patient cohort was 45% female, with a mean age of 31 years (SD 11, range 14–66). Meniscal injury was detected in 1229/1814 knees (67.8%). There were 729 debridements and 538 repairs performed. Graft choice was hamstring autograft in 85.8% of cases, bone-patellar-tendon-bone autograft in 2.5%, allograft in 10.1% and other graft types in 1.5%. Pre-operative ACL-QoL scores were 29 and 28.5 for knees without and with meniscal damage, respectively (p>0.05). Of 1814 patients, 1269 (69.9%) completed the ACL-QoL at the two-year appointment, and 1225 (67.5%) completed the functional testing. At two years post-operative, patients with no meniscal damage at surgery demonstrated superior limb symmetry performance on triple-hop for distance compared to patients with meniscal damage (98.4% vs 97.1%, p < 0 .05, CI 0.1–2.5%). No other functional testing parameters showed statistical significance. There was no difference in functional outcome between patients undergoing an isolated meniscal repair versus debridement at one- or two-years. ACL-QoL scores were statistically significantly higher at one- and two-years post-operative for patients without meniscal damage (1-year: 73 vs 70.2, p < 0 .05, CI 0.51–5.1, 2-years: 79.2 vs 76.1, p < 0 .05, CI 0.79–5.4). ACL-QoL scores were minimally higher for isolated meniscal debridement compared to isolated meniscal repair at both time points (1-year: 71.4 vs 68, p < 0 .05, CI 0.4–6.4, 2-years: 78.3 vs 74, p < 0 .05, CI 1.3–7.3). Functional outcomes do not differ at one or two years post-operatively for patients undergoing meniscal repair versus debridement concomitant with ACL-R. Quality of life scores were statistically significantly higher for the patients with no meniscal pathology at both one- and two-years post-operative. ACL-QoL scores were also statistically significantly different for the meniscal repair and debridement groups however these differences are unlikely to be clinically significant. Extended follow-up is needed to determine if the differences detected in ACL-QoL scores are sustained over time, as well as the long-term role of meniscal injury on functional outcomes


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 56 - 56
23 Feb 2023
Rahardja R Love H Clatworthy M Young S
Full Access

Arthrofibrosis is a less common complication following anterior cruciate ligament (ACL) reconstruction and there are concerns that undergoing early surgery may be associated with arthrofibrosis. The aim of this study was to identify the patient and surgical risk factors for arthrofibrosis following primary ACL reconstruction. Primary ACL reconstructions prospectively recorded in the New Zealand ACL Registry between April 2014 and December 2019 were analyzed. The Accident Compensation Corporation (ACC) database was used to identify patients who underwent a subsequent reoperation with review of operation notes to identify those who had a reoperation for “arthrofibrosis” or “stiffness”. Univariate Chi-Square test and multivariate Cox regression analysis was performed. Hazard ratios (HR) with 95% confidence intervals (CI) were computed to identify the risk factors for arthrofibrosis. 9617 primary ACL reconstructions were analyzed, of which 215 patients underwent a subsequent reoperation for arthrofibrosis (2.2%). A higher risk of arthrofibrosis was observed in female patients (adjusted HR = 1.67, 95% CI 1.22 – 2.27, p = 0.001), patients with a history of previous knee surgery (adjusted HR = 1.97, 95% CI 1.11 – 3.50, p = 0.021) and when a transtibial femoral tunnel drilling technique was used (adjusted HR = 1.55, 95% CI 1.06 – 2.28, p = 0.024). Patients who underwent early ACL reconstruction within 6 weeks of their injury did not have a higher risk of arthrofibrosis when compared to patients who underwent surgery more than 6 weeks after their injury (3.5% versus 2.1%, adjusted HR = 1.56, 95% CI 0.97 – 2.50, p = 0.07). Age, graft type and concomitant meniscal injury did not influence the rate of arthrofibrosis. Female sex, a history of previous knee surgery and a transtibial femoral tunnel drilling technique are risk factors for arthrofibrosis following primary ACL reconstruction


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 31 - 31
10 May 2024
Clatworthy M Rahardja R Young S Love H
Full Access

Background. Anterior cruciate ligament (ACL) reconstruction with concomitant meniscal injury occurs frequently. Meniscal repair is associated with improved long-term outcomes compared to resection but is also associated with a higher reoperation rate. Knowledge of the risk factors for repair failure may be important in optimizing patient outcomes. Purpose. This study aimed to identify the patient and surgical risk factors for meniscal repair failure, defined as a subsequent meniscectomy, following concurrent primary ACL reconstruction. Methods. Data recorded by the New Zealand ACL Registry and the Accident Compensation Corporation, the New Zealand Government's sole funder of ACL reconstructions and any subsequent surgery, was reviewed. Meniscal repairs performed with concurrent primary ACL reconstruction was included. Root repairs were excluded. Univariate and multivariate survival analysis was performed to identify the patient and surgical risk factors for meniscal repair failure. Results. Between 2014 and 2020, a total of 3,024 meniscal repairs were performed during concurrent primary ACL reconstruction (medial repair = 1,814 and lateral repair = 1,210). The overall failure rate was 6.6% (n = 201) at a mean follow-up of 2.9 years, with a failure occurring in 7.8% of medial meniscal repairs (142 out of 1,814) and 4.9% of lateral meniscal repairs (59 out of 1,210). The risk of medial failure was higher in patients with a hamstring tendon autograft (adjusted HR = 2.20, p = 0.001), patients aged 21–30 years (adjusted HR = 1.60, p = 0.037) and in those with cartilage injury in the medial compartment (adjusted HR = 1.75, p = 0.002). The risk of lateral failure was higher in patients aged ≤ 20 years (adjusted HR = 2.79, p = 0.021) and when the procedure was performed by a surgeon with an annual ACL reconstruction case volume of less than 30 (adjusted HR = 1.84, p = 0.026). Conclusion. When performing meniscal repair during a primary ACL reconstruction, the use of a hamstring tendon autograft, younger age and the presence of concomitant cartilage injury in the medial compartment increases the risk of medial meniscal repair failure, whereas younger age and low surgeon volume increases the risk of lateral meniscal repair failure


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 120 - 120
1 Sep 2012
Roe J Sri-Ram K Salmon L Pinczewski L
Full Access

To determine the relationship between advancing months from ACL rupture and the incidence of intra-articular meniscal and chondral damage. From a prospectively collected database 5086 patients undergoing primary ACL reconstruction, using hamstring graft, carried out between January 2000 and August 2010 were identified. Data collected included the interval between injury and surgery, type and location of meniscal tears (requiring meniscectomy) and location and severity of chondral damage (ICRS grading system). Patients were grouped according to time interval and age. The median time from ACL injury to ACL reconstruction was 3 months (range 0.25 to 480). Overall, an increasing incidence of medial meniscal injury and chondral damage occurred with advancing chronicity of ACL deficiency. The incidence of medial meniscal injury requiring meniscectomy increased from 18% of patients undergoing ACL reconstruction within 4 months of injury to 59% of patients if ACL reconstruction was delayed more than 12 months (p<0.001). The incidence of lateral meniscal tears did not increase significantly over time. The increasing incidence of secondary pathology with advancing chronicity was more pronounced in the younger age groups. The risk of a medial meniscal tear requiring resection was significantly less if surgery was performed before 5 months in the <17 years group (Odds Ratio 2) and 17–30 years group (OR 1.9), but less so in the 31–50 years group (OR 1.5) and >50 years group (OR 1.5). Advancing age was associated with a greater incidence of chondral damage and medial meniscal injury, but not lateral meniscal injury. Males had a greater incidence of lateral meniscal tears (34% vs. 20%), but not medial (28% vs. 25%) or chondral damage (35% vs. 36%), compared to females. The incidence of chondral damage and medial meniscal tears increases with advancing time after ACL injury. Particularly in younger patients, ACL reconstruction should be performed within 4 months of ACL injury in order to minimise the risk of irreversible damage to meniscal and chondral structures


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 47 - 47
1 Mar 2021
Martin K Persson A Moatshe G Fenstad A Engebretsen L Visnes H
Full Access

Surgery performed in low-volume centres has been associated with longer operating time, longer hospital stays, lower functional outcomes, and higher rates of revision surgery, complications, and mortality. This has been reported consistently in the arthroplasty literature, but there is a paucity of data regarding the relationship between surgical volume and outcome following anterior cruciate ligament (ACL) reconstruction. The purpose of this study was to compare the ACL reconstruction failure rate between hospitals performing different annual surgical volumes. The hypothesis was that ACL reconstructions performed at low-volume hospitals would be associated with higher failure rates than those performed at high-volume centres. This level-II cohort study included all patients from the Norwegian Knee Ligament Registry that underwent isolated primary autograft ACL reconstruction between 2004 and 2016. Hospital volume was divided into quintiles based on the number of ACL reconstructions performed annually, defined arbitrarily as: 1–12 (V1), 13–24 (V2), 25–49 (V3), 50–99 (V4), and ≥100 (V5) annual procedures. Kaplan-Meier estimated survival curves and survival percentages were calculated with revision ACL reconstruction as the end point. Mean change in Knee Injury and Osteoarthritis Outcome Score (KOOS) Quality of Life and Sport subsections from pre-operative to two-year follow-up were compared using t-test. 19,204 patients met the inclusion criteria and 1,103 (5.7%) underwent subsequent revision ACL reconstruction over the study period. Patients in the lower volume categories (V1-3) were more often male (58–59% vs. 54–55% p=<0.001) and older (27 years vs. 24–25 years, p=<0.001) compared to the higher volume hospitals (V4-5). Concomitant meniscal injuries (52% vs. 40%) and participation in pivoting sports (63% vs. 56%) were most common in V5 compared with V1 (p=<0.001). Median operative time decreased as hospital volume increased, ranging from 90 minutes at V1 hospitals to 56 minutes at V5 hospitals (p=<0.005). Complications occurred at a rate of 3.8% at low-volume (V1) hospitals versus 1.9% at high-volume (V5) hospitals (p=<0.001). Unadjusted 10-year survival with 95% confidence intervals for each hospital volume category were: V1 – 95.1% (93.7–96.5%), V2 – 94.1% (93.1–95.1%), V3 – 94.2% (93.6–94.8%), V4 – 92.6% (91.8–93.4%), and V5 – 91.9% (90.9–92.9%). There was no difference in improvement between pre-operative and two-year follow-up KOOS scores between hospital volume categories. Patients having ACL reconstruction at lower volume hospitals did not have inferior clinical or patient reported outcomes, and actually demonstrated a lower revision rate. Complications occurred more frequently however, and operative duration was longer. The decreased revision rate is an interesting finding that may be partly explained by the fact that patients being treated in these small, often rural hospitals, may be of lower demand as suggested by the increased age and decreased participation in pivoting sports. In addition, patients with more complicated pathology such as meniscal tears were more commonly treated in the larger volume hospitals. The most significant limitation of this study is that provider volume was not assessed, and the number of surgeons dividing up the surgical volume at each hospital is not known


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_13 | Pages 19 - 19
1 Nov 2019
Vijayan S Kulkarni MS Shetty S Naik AM Rao SK
Full Access

Anterior cruciate ligament (ACL) injuries are one of the most common ligament injury occurring in young and active individuals. Reconstruction of the torn ligament is the current standard of care. Of the many factors which determine the surgical outcome, fixation of the graft in the bony tunnels has significant role. This study compared the clinical and functional outcome in patients who underwent ACL reconstruction by standard anteromedial portal technique with single bundle hamstring graft anchored in the femoral tunnel using rigidfix and cortical button with adjustable loops. The tibial fixation and rehabilitation protocol were same in both groups. 107 patients underwent ACL reconstruction over a two-year period (87 males, 20 females, 44 after motor vehicle accident, 34 after sports injuries, 79 isolated ACL tear, 21 associated medial meniscus tear, 16 lateral meniscus tear and 11 both menisci). Rigid fix group had 47 patients and adjustable loop 60 patients. Clinical evaluation at end of one year showed better stability in rigid fix group regarding Lachman, anterior drawer, pivot shift tests, KT 1000 arthrometer side to side difference and hop limb symmetry index. However, the differences were not statistically significant. Functional evaluation using IKDC 2000 subjective score and Lysholm score showed better results in rigidfix group than variable loop, but was not statistically significant. However, lower scores were noted in patients with concomitant meniscal injury than in isolated acl tear patients and this was statistically significant in both groups. Rigidfix seems to give better graft fixation on femoral side than variable loop, but by the end of one year the functional outcome is comparable in isolated acl reconstructions


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 36 - 36
1 Jul 2020
Mahmood F Clarke J Riches P
Full Access

The meniscus is comprised largely of type I collagen, as well as fibrochondrocytes and proteoglycans. In articular cartilage and intervertebral disc, proteoglycans make a significant contribution to mechanical stiffness of the tissue via negatively charged moieties which generate Donnan osmotic pressures. To date, such a role for proteoglycans in meniscal tissue has not been established. This study aimed to investigate whether meniscal proteoglycans contribute to mechanical stiffness of the tissue via electrostatic effects. Following local University Ethics Committee approval, discs of meniscal tissue two millimetres thick and of five millimetres diameter were obtained from 12 paired fresh frozen human menisci, from donors < 6 5 years of age, with no history of osteoarthritis or meniscal injury. Samples were taken from anterior, middle and posterior meniscal regions. Each disc was placed within a custom confined compression chamber, permeable at the top and bottom only and then bathed in one of three solutions − 0.14M PBS (mimics cellular environment), deionised water (negates effect of mobile ions) or 3M PBS (negates all ionic effects). The apparatus was mounted within a Bose Electroforce 3100 materials testing machine and a 0.3N preload was applied. The sample was allowed to reach equilibrium, before being subjected to a 10% ramp compressive strain followed by a 7200 second hold phase. Equal numbers of samples from each meniscus and meniscal region were tested in each solution. Resultant stress relaxation curves were fitted to a nonlinear poroviscoelastic model with strain dependent permeability using FEBio finite element modelling software. Goodness of fit (R2) was assessed using a coefficient of determination. All samples were assayed for proteoglycan content. Comparison of resultant mechanical parameters was undertaken using multivariate ANOVA with Bonferroni adjustment for multiple comparisons. 36 samples were tested. A significant difference (p < 0 .05) was observed in the value of the Young's modulus (E) between samples tested in deionised water compared to 0.14M/3M PBS, with the meniscus found to be stiffest in deionised water (E = 1.15 MPa) and least stiff in 3M PBS (E = 0.43 MPa), with the value of E in 0.14M PBS falling in between (0.68 MPa). No differences were observed in the zero strain permeability or the exponential strain dependent/stiffening coefficients. The viscoelastic coefficient and relaxation time values were not found to improve model fit and were thus held at zero. The mean R2 value was 0.78, indicating a good fit and did not differ significantly between solutions. Proteoglycan content was not found to differ with solution, but was found to be significantly increased in the middle region of both menisci. Proteoglycans make a significant electrostatic contribution to mechanical stiffness of the meniscus, increasing it by 58% in the physiological condition, and are hence integral to its function. It is important to include the influence of ionic effects when modelling meniscus, particularly where fluid flow or localised strain is modelled. From a clinical perspective, it is critical that meniscal regeneration strategies such as scaffolds or allografts attempt to preserve, or compensate for, the function of proteoglycans to ensure normal meniscal function


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 97 - 97
1 Feb 2012
Hart A Dowd G
Full Access

Early stabilisation after an anterior cruciate ligament (ACL) rupture reduces future meniscal injury. We may therefore expect protection of articular cartilage from ACL reconstruction, but this has yet to be shown. Our aim wasto determine the effect of meniscal injury on the long term risk of osteoarthritis (OA) following ACL reconstruction using Single Photon Emission Computed Tomography (SPECT, a 3 dimensional radionuclide scan). We studied a prospective series of 31 patients (mean age at injury of 29 years) who had bone-patellar tendon-bone ACL reconstruction for unstable, ACL deficient knees. Mean follow-up was 10 years (range 9-13). Patients were separated into two groups according to the status of their menisci at the time of ACL reconstruction, those with intact menisci in group 1 (n=15) and those who required partial meniscectomy in group 2 (n=16). The contra-lateral normal knee was used as a control. All knees were clinically stable with high clinical scores (mean Lysholm score 93 and mean Tegner activity score 6). In group 1 (intact menisci) only one patient (7%) had clinical symptoms of OA and was the only patient with increased uptake on SPECT compatible with early OA. In group 2 (partial meniscectomy), two had clinical symptoms of osteoarthritis, and five patients (32%) had increased uptake on SPECT compatible with early OA. None of the control knees had early OA on SPECT. The prevalence of OA 10 years post ACL reconstruction, using the most sensitive investigation available, is very low in patients who had intact menisci (7%), but increases 5 fold (32%) if a meniscal tear was present. We recommend early ACL reconstruction to preserve the menisci to minimise the long term risk of OA


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_8 | Pages 16 - 16
1 Jun 2015
Ghosh K Quayle J Nawaz Z Stevenson T Williamson M Shafafy R Chissell H
Full Access

Difficulties arise when counselling younger patients on the long-term sequelae of a minor knee chondral defect. This study assesses the natural history of patients with grade 2 Outerbridge chondral injuries of the medial femoral condyle at arthroscopy. We reviewed all arthroscopies performed by one surgeon over 12 years with Outerbridge grade 2 chondral defects. Patients aged 30 to 59 were included. Meniscal injuries found were treated with partial menisectomy. All patients had five-year follow up minimum. Primary outcome measure was further interventions of total or unicondylar arthroplasty or high tibial osteotomy. We analysed 3,344 arthroscopies. Average follow up was 10 years (Range 5–17 years). A total of 357 patients met inclusion criteria of which 86 had isolated medial femoral condyle disease. Average age was 50 at the time of arthroscopy. Average BMI at surgery was 31.7 and average chondral defect area was 450 mm. 2. Isolated MFC chondral disease had a 10.5% intervention rate. Intervention occurred at a mean of 8.5 years post primary arthroscopy. In young patients Outerbridge II chondral injuries affecting ≥2 compartments have a high rate of further intervention within a decade. This information is crucial in counselling young patients on long-term sequelae of benign chondral lesions


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_19 | Pages 11 - 11
1 Apr 2013
Mandalia V Kassam A Schranz P
Full Access

Introduction. Anatomical reconstruction of the Anterior Cruciate Ligament (ACL) reconstruction has been shown to be desirable and improve patient outcome. The posterior border of the anterior horn of the lateral meniscus (AHLM) is an easily identifiable arthroscopic landmark, which could guide anatomic tibial tunnel position in the sagital plane. The aim of the study was to establish the relationship between the posterior border of AHLM and the centre of the ACL foot print to facilitate anatomical tibial tunnel placement. Materials/Methods. We analysed 100 knee MRI scans where there was no ACL or lateral meniscal injury. We measured the distance between the posterior border of the AHLM and the midpoint of the tibial ACL footprint in the sagital plane. The measurements were repeated 2 weeks later for intra-observer reliability. Results. The mean distance between the posterior border of the AHLM and the ACL midpoint was −0.1mm (i.e. 0.1mm posterior to the ACL midpoint). The range was 5mm to −4.6mm. The median value was 0.00mm. 95% confidence interval was from 0.3 mm to −0.5 mm. A normal, parametric distribution was observed and Intra-observer variability showed significant correlation (p=0.01) using Pearsons Correlation test. Conclusion. Using the posterior border of the AHLM is a reliable, reproducible and anatomic marker for the midpoint of the ACL footprint in the majority of cases. It can be used intra-operatively as a guide for tibial tunnel and graft placement allowing anatomical reconstruction. There will inevitably be some anatomical variation. Pre-operative MRI assessment of the relationship between AHLM and ACL footprint is advised to improve surgical planning


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 250 - 250
1 Dec 2013
Buechel F
Full Access

Introduction:. This is a case report of a 78 year old male who underwent outpatient mini-incision medial UKA using the haptic robotic guidance. The patient subsequently suffered a traumatic lateral meniscus tear and underwent a lateral compartment UKA with the same robotic system instead of converting to a total knee replacement at one year post op and is now 2 years post op on the lateral side as well. Methods:. The patient is a 74 year old male with a BMI of 27, suffering from OA of the right knee. He had a previous TKA on his left side by another surgeon that was followed with a lateral release by still another surgeon with fair to good satisfaction currently; however he did not want another TKA. He had multiple aspirations and injections of corticosteroids for arthritic effusions on his right knee that were moderate to severe and painful. On 7/6/2010 he underwent a right medial UKA using with robotic guidance. The patient had a subsequent injury to his lateral meniscus causing pain for which multiple options were discussed with the patient. The informed patient chose to have a lateral compartment arthroplasty. On 6/21/2011 a lateral compartment UKA was performed on the same patient's right knee through a second mini-lateral incision again using robotic guidance. Results:. The patient is now 35 months after his right medial UKA and 24 months after his right lateral UKA. His function is excellent, his range of motion is excellent at 0–135° compared to 120° pre-operatively, his satisfaction is excellent and he has no self-reported limitations with his right knee. Conclusions:. The complexity of patient-specific planning, the ability to adjust that plan intra-operatively to optimize kinematics and the safety of implementing this plan using haptically guided robotic bone resection provides many advantages in partial knee arthroplasty. In the case presented here, a post-operative lateral meniscal injury subsequent to medial UKA in the same knee was treated with a lateral UKA. Accurate placement of the components and balancing the knee with the existing medial UKA provided by the robotic platform was critical to the excellent post-operative outcomes


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 125 - 125
1 Sep 2012
Jin A Lynch J Scholes C Li Q Coolican M Parker D
Full Access

An ACL reconstruction is designed to restore the normal knee function and prevent the onset and progression of degenerative changes such as osteoarthritis. However, contemporary literature provides limited consensus on whether knee degeneration can be attenuated by the reconstruction procedure. The aim of this pilot study was to identify the presence of early osteoarthritis after ACL reconstruction using MRI analysis. 19 patients who had undergone an ACL reconstruction (9 isolated ACL rupture, 8 ACL rupture and meniscectomy, 2 ACL rupture and meniscal repair) volunteered for this study. MRI's were collected preoperatively and postoperatively for analysis with a mean follow up of 23 months. The Boston-Leeds Osteoarthritis Knee Score (BLOKS) was used for the analysis of the articular cartilage by a consultant orthopaedic surgeon. Scores ranged from 0–3, with 0 being total coverage and thickness of the cartilage and 3 being no coverage. Qualitative analysis was then conducted on each patient to determine if the articular cartilage improved, degenerated, or did not change between preoperative and follow-up scans. All patients with isolated ACL rupture were found to either have no change or improved articular cartilage scores in their follow up scans compared preoperatively. In contrast, patients with a meniscal repair displayed worse cartilage scores postoperatively. Lastly, of the patients who had an associated meniscectomy, 6 had worse follow-up results, with the remaining patients showing no change or improved cartilage scores. The present results indicate that patients with an isolated ACL rupture have a reduced risk of developing OA compared to those with associated meniscal injuries. This has implications for analysing the outcome of current ACL reconstruction techniques and in predicting the likelihood of patients developing OA after ACL reconstruction. Future work will involve confirming this pattern in a larger patient sample, as well as exploring additional factors such as time to surgery delay and rehabilitation strategy


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 103 - 103
1 Feb 2012
Robinson J Baudot C Colombet P Thoribé B Paris G
Full Access

There are a few papers in the literature to indicate the likely functional outcome of conservatively managed sportsmen in whom primary outcome cruciate ligament [ACL] healing occurs. We reviewed 298 sportsmen presenting with isolated ACL rupture that were conservatively managed with a rehabilitation programme, based on regaining proprioceptive and hamstring control, and aimed at achieving primary ACL healing. All were protected in a hinged brace. In 50 patients, the ACL was determined as having healed clinically; these patients underwent instrumented laximetry testing with KT 1000 arthrometry and were determined: IKDC A [Normal] or IKDC B [nearly normal]. An MRI was also performed which confirmed healing in 39 patients with ACL fibres parallel to Blumenstat's line. In 11 patients the ACL stump had healed to the PCL. The 50 patients were followed up for an average 16 months [range, 14 to 17 months]. 56% of patients suffered recurrent instability when they returned to their preinjury level of contact or pivoting sport. For competitive athletes, 76.5% suffered further instability on return to sport despite the four-month rehabilitation and independent arthrometry score or MRI findings. However, for occasional, recreational athletes only 7% suffered recurrent instability. This study suggests that a rehabilitation programme aimed at primary ACL healing affords satisfactory results for the occasional, recreational athlete but does not achieve the quality of restraint sufficient for contact or pivoting sports in competitive athletes. These patients suffer high levels of recurrent instability and are exposed to the risk of secondary chondral and meniscal injury


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 157 - 157
1 Feb 2012
Al-Arabi Y Murray J Wyatt M Deo S Satish V
Full Access

Aim. To assess the efficacy and ease of use of the Oxford Knee Score (OKS) in soft tissue knee pathology. Method. In a prospective study, we compared the OKS against the International Knee Documentation Committee 2000 (IKDC) and the Lysholm Scores (Lys). We also assessed the OKS with retrograde (Reversed OKS: 48=worst symptoms, 0=asymptomatic) and antegrade (as currently used in Oxford) numbering. All patients completed 3 questionnaires (OKS, Lys, and IKDC, or RevOKS, Lys, and IKDC) stating which was the simplest from their perspective. We recruited 93 patients from the orthopaedic and physiotherapy clinics. All patients between the ages of 15 and 45 with soft tissue knee derangements, such as ligamentous, and meniscal injuries were included. Exclusions were made in patients with degenerative and/or inflammatory arthritidis. Patients who had sustained bony injuries or underwent bony surgery were also excluded. Results. The distribution of the soft tissue injuries was: Meniscal tears (35%), anterior cruciate ligament injuries (23%), anterior knee pain (22%), other injuries (12%), and collateral ligament damage (8%). Linear regression analysis revealed no significant difference between all 3 scores (R squared=0.7823, P<0.0001). The OKS correlated best with the IKDC (r=0.7483), but less so with the Lys (r=0.3278). The reversed OKS did not correlate as well (R squared= 0.2603) with either the IKDC (r= -0.2978) or the Lys (r=-0.2586). ANOVA showed the OKS to be significantly easier than Lys to complete (p<0.0001), but not significantly easier than IKDC (p>0.05). Conclusion. The OKS is patient friendly and reliable in assessing soft tissue knee injury. This is particularly useful if the OKS is already in use within a department for assessment of degenerative disease. The Oxford Knee score should be used in an antegrade fashion (with a score of 48/48 corresponding to maximum symptoms) to give the best results in objective assessment