Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 101 - 101
1 Dec 2013
Gladnick B Khamaisy S Nam D Reinhardt K Pearle A
Full Access

Introduction

Limb alignment after unicondylar knee arthroplasty (UKA) has a significant impact on surgical outcomes. The literature lacks studies that evaluate the limb alignment after lateral UKA or compare alignment outcomes between medial and lateral UKA. In this study, we retrospectively compare a single surgeon's alignment outcomes between medial and lateral UKA using a robotic-guided protocol.

Methods

All surgeries were performed by a single surgeon using the same planning software and robotic guidance for execution of the surgical plan. The senior surgeon's prospective database was reviewed to identify patients who had 1) undergone medial or lateral UKA for unicompartmental osteoarthritis; and 2) had adequate pre- and post-operative full-length standing radiographs. There were 229 medial UKAs and 37 lateral UKAs in this study. Mechanical limb alignment was measured in standing long limb radiographs both pre- and post-operatively. Intra-operatively, limb alignment was measured using the computer assisted navigation system. The primary outcome was over-correction of the mechanical alignment (i.e, past neutral). Our secondary outcome was the difference between the radiographic post-operative alignment and the intra-operative “virtual” alignment as measured by the computer navigation system. This allowed an assessment of the accuracy of our navigation system for predicting post-operative limb alignment after UKA.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 82 - 82
1 Aug 2013
Khamaisy S Gladnick BP Nam D Reinhardt KR Pearle A
Full Access

Lower limb alignment after unicondylar knee arthroplasty (UKA) has a significant impact on surgical outcomes. The literature lacks studies that evaluate the limb alignment after lateral UKA or compare it to alignment outcomes after medial UKA, making our understanding of this issue based on medial UKA studies. Unfortunately, since the geometry, mechanics, and ligamentous physiology are different between these two compartments, drawing conclusions for lateral UKAs based on medial UKA results may be imprecise and misleading. The purpose of this study was to compare the risk for limb alignment overcorrection and the ability to predict postoperative limb alignment between medial and lateral UKA. We evaluated the results of mechanical limb alignment in 241 patients with unicompartmental knee osteoarthritis who underwent medial or lateral UKA; there were 229 medial UKAs and 37 lateral UKAs. Mechanical limb alignment was measured in standing long limb radiographs pre and post-operatively, intra-operatively it was measured using a computer assisted navigation system. Between the two cohorts, we compared the percentage of overcorrection and the difference between post-operative alignment and alignment measured by the navigation system. The percentage of overcorrection was significantly higher in the lateral UKA group (11%), when compared to the medial UKA group (4%), (p= 0.0001). In the medial UKA group, the mean difference between the intraoperative “virtual” alignment provided by the navigation system, and the post-operative, radiographically measured mechanical axis, was 1.33°(±1.2°). This was significantly lower than the mean 1.86° (±1.33°) difference in the lateral UKA group (p=0.019). Our data demonstrated an increased risk of mechanical limb alignment overcorrection and greater difficulty in predicting postoperative alignment using computer navigation, when performing lateral UKAs compared to medial UKAs.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 108 - 108
1 Aug 2013
Khamaisy S Gladnick BP Nam D Reinhardt KR Pearle A
Full Access

Lower limb alignment after unicondylar knee arthroplasty (UKA) has a significant impact on surgical outcomes. The literature lacks studies that evaluate the limb alignment after lateral UKA or compare it to alignment outcomes after medial UKA, making our understanding of this issue based on medial UKA studies. Unfortunately, since the geometry, mechanics, and ligamentous physiology are different between these two compartments, drawing conclusions for lateral UKAs based on medial UKA results may be imprecise and misleading. The purpose of this study was to compare the risk for limb alignment overcorrection and the ability to predict postoperative limb alignment between medial and lateral UKA. We evaluated the results of mechanical limb alignment in 241 patients with unicompartmental knee osteoarthritis who underwent medial or lateral UKA; there were 229 medial UKAs and 37 lateral UKAs. Mechanical limb alignment was measured in standing long limb radiographs pre and post-operatively, intra-operatively it was measured using a computer assisted navigation system. Between the two cohorts, we compared the percentage of overcorrection and the difference between post-operative alignment and alignment measured by the navigation system. The percentage of overcorrection was significantly higher in the lateral UKA group (11%), when compared to the medial UKA group (4%), (p= 0.0001). In the medial UKA group, the mean difference between the intraoperative “virtual” alignment provided by the navigation system, and the post-operative, radiographically measured mechanical axis, was 1.33°(±1.2°). This was significantly lower than the mean 1.86° (±1.33°) difference in the lateral UKA group (p=0.019). Our data demonstrated an increased risk of mechanical limb alignment overcorrection and greater difficulty in predicting postoperative alignment using computer navigation, when performing lateral UKAs compared to medial UKAs.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 68 - 68
1 May 2016
Jones G Clarke S Jaere M Cobb J
Full Access

The treatment of patients with osteoarthritis of the knee and associated extra-articular deformity of the leg is challenging. Current teaching recognises two possible approaches: (1) a total knee replacement (TKR) with intra-articular bone resections to correct the malalignment or (2) an extra-articular osteotomy to correct the malalignment together with a TKR (either simultaneously or staged). However, a number of these patients only have unicompartmental knee osteoarthritis and, in the absence of an extra-articular deformity would be ideal candidates for joint preserving surgery such as unicompartmental knee replacement (UKR) given its superior functional outcome and lower cost relative to a TKR [1). We report four cases of medial unicondylar knee replacement, with a simultaneous extra-articular osteotomy to correct deformity, using novel 3D printed patient-specific guides (Embody, UK) (see Figure 1). The procedure was successful in all four patients, and there were no complications. A mean increase in the Oxford knee score of 9.5, and in the EQ5D VAS of 15 was observed. To our knowledge this is the first report of combined osteotomy and unicompartmental knee replacement for the treatment of extra-articular deformity and knee osteoarthritis. This technically challenging procedure is made possible by a novel 3D printed patient-specific guide which controls osteotomy position, degree of deformity correction (multi-plane if required), and orientates the saw-cuts for the unicompartmental prosthesis according to the corrected leg alignment. Using 3D printed surgical guides to perform operations not previously possible represents a paradigm shift in knee surgery. We suggest that this joint preserving approach should be considered the preferred treatment option for suitable patients