Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:

The ankle radiograph is a commonly requested investigation as the ankle joint is commonly injured. Each radiograph exposes 0.01 mSv of radiation to the patient that is equivalent to 1.5 days of natural background radiation [1]. The aim of the clinical audit was to use the Ottawa Ankle Rule to attempt to reduce the number of ankle radiographs taken in patients with acute ankle injuries and hence reduce the dose of ionising radiation the patient receives. A retrospective audit was undertaken. 123 ankle radiograph requests and radiographs taken between May and July 2018 were evaluated. Each ankle radiograph request including patient history and clinical examination was graded against the Ottawa Ankle Rule. The rule states that 1 point(s) indicates radiograph series; (1) malleolar and/or midfoot pain; (1) tenderness over the posterior 6cm or tip of the lateral or medial malleolus (ankle); (1) tenderness over the navicular or the base of the fifth metatarsal (foot); (1) unable to take four steps both immediately and in the emergency department [2]. Patients who score 0 do not need radiograph series. Each radiograph was reviewed if a fracture was present or not. The clinical audit identified 14 true positives where the Ottawa Ankle Rule scored 1 and the patient had an ankle fracture, and 2 false negatives (sensitivity 88%). There were 81 false positives, and 23 true negatives (specificity 22%). Therefore, a total of 23/123 ankle radiographs were unnecessary which is equivalent to 34.5 days of background radiation. The negative predictive value of the Ottawa Ankle Rule in this audit was 92%. The low rate of Ottawa rule utilisation may unnecessarily cause patient harm that should be addressed. An educational intervention with physicians combined with integration of the Ottawa rule scoring in ankle radiograph requests is planned with re-audit in 6 months


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 64 - 64
1 Nov 2021
Khojaly R Rowan FE Hassan M Hanna S Cleary M Niocaill RM
Full Access

Introduction and Objective. Postoperative management regimes vary following open reduction and internal fixation of unstable ankle fractures. There is an evolving understanding that poorer outcomes could be associated with non-weight bearing protocols and immobilisation. Traditional non-weight bearing cast immobilisation may prevent loss of fixation, and this practice continues in many centres. The aim of this systematic review and meta-analysis is to compare the complication rate and functional outcomes of early weight-bearing (EWB) versus late weight-bearing (LWB) following open reduction and internal fixation of ankle fractures. Materials and Methods. We performed a systematic review with a meta-analysis of controlled trials and comparative cohort studies. MEDLINE (via PubMed), Embase and the Cochrane Library electronic databases were searched inclusive of all date up to the search time. We included all studies that investigated the effect of weight-bearing following adults ankle fracture fixation by any means. All ankle fracture types, including isolated lateral malleolus fractures, isolated medial malleolus fractures, bi-malleolar fractures, tri-malleolar fractures and Syndesmosis injuries, were included. All weight-bearing protocols were considered in this review, i.e. immediate weight-bearing (IMW) within 24 hours of surgery, early weight-bearing (EWB) within three weeks of surgery, non-weight-bearing for 4 to 6 weeks from the surgery date (or late weight-bearing LWB). Studies that investigated mobilisation but not weight-bearing, non-English language publications and tibial Plafond fractures were excluded from this systematic review. We assessed the risk of bias using ROB 2 tools for randomised controlled trials and ROBINS-1 for cohort studies. Data extraction was performed using Covidence online software and meta-analysis by using RevMan 5.3. Results. After full-text review, fourteen studies (871 patients with a mean age ranged from 35 to 57 years) were deemed eligible for this systematic review; ten randomised controlled trials and four comparative cohort studies. Most of the included studies were rated as having some concern with regard to the risk of bias. There is no important difference in the infection rate between protected EWB and LWB groups (696 patients in 12 studies). The risk ratio (RR) is 1.30, [95% CI 0.74 to 2.30], I. 2. = 0%, P = 0.36). Other complications were rare. The Olerud-Molander Ankle Score (OMAS) was the widely used patient-reported outcome measure after ankle fracture fixation among the studies. The result of the six weeks OMAS analysis (three RCTs) was markedly in favour of the early weight-bearing group (MD = 10.08 [95% CI 5.13 to 15.02], I. 2. = 0%P = <0.0001). Conclusions. The risk of postoperative complications is an essential factor when considering EWB. We found that the overall incidence of surgical site infection was 6%. When comparing the two groups, the incidence was 5.2% and 6.8% for the LWB and EWB groups. This difference is not clinically important. On the other hand, significantly better early functional outcome scores were detected in the EWB group. These results are not without limitations. Protected early weight-bearing following open reduction and internal fixation of ankle fractures is potentially safe and improve short-term functional outcome. Further good-quality randomised controlled trials would be needed before we could draw a more precise conclusion


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 233 - 233
1 Jul 2014
Ovaska M Mäkinen T Madanat R Kiljunen V Lindahl J
Full Access

Summary. Syndesmotic malreduction or failure to restore fibular length are the leading causes for early reoperation after ankle fracture surgery. Anatomic fracture reduction and congruent ankle mortise can be achieved in the majority of cases following revision surgery. Introduction. The goal of ankle fracture surgery is to restore anatomical congruity. However, anatomic reduction is not always achieved, and residual talar displacement and postoperative malreduction predispose a patient to post-traumatic arthritis and poor functional outcomes. The present study aimed to determine the most common surgical errors resulting in early reoperation following ankle fracture surgery. Patients & Methods. We performed a chart review to determine the most common types of malreductions that led to reoperation within the first week following ankle fracture surgery. From 2002 to 2011, we identified 5123 consecutive ankle fracture operations in 5071 patients. 79 patients (1.6%) were reoperated on due to malreduction (residual fracture displacement > 2mm) detected in postoperative radiographs. These patients were compared with an equal number of age- and sex-matched control patients. Surgical errors were classified according to the anatomical site of malreduction: fibula, medial malleolus, posterior malleolus, Chaput-Tillaux fragment, and syndesmosis. Problems related to syndesmotic reduction or fixation were further divided into four categories: malreduction of the fibula in the tibiofibular incisura due to malpositioning of a syndesmotic screw, persistent tibiofibular widening (TFCS > 6 mm), positioning of a syndesmotic screw posterior to the posterior margin of the tibia, and unnecessary use of a syndesmotic screw. Results. The mean patient age was 44 years (18 to 80), and 49% were women. There were no differences between the groups regarding diabetes, tobacco use, peripheral vascular disease, or alcohol abuse. The most common indication for reoperation was syndesmotic malreduction (47 of 79 patients; 59%). Other frequent indications for reoperation were fibular shortening and malreduction of the medial malleolus. We identified four main types of errors related to syndesmotic reduction or fixation, the most common being fibular malreduction in the tibiofibular incisura. The most commonly combined errors were malreductions of the fibula and syndesmosis, which occurred together in 16 of 79 patients (20%). Fracture-dislocation (p = 0.011), fracture type (p = 0.001), posterior malleolar fracture (p = 0.005), associated medial malleolar fracture (p = 0.001), duration of index surgery (p = 0.001), and associated medial malleolar fixation other than with two parallel screws (p = 0.045) were associated with reoperation. Correction of the malreduction was achieved in 84% of reoperated cases. Conclusion. Early reoperation after ankle fracture surgery was most commonly caused by errors related to syndesmotic reduction or failure to restore fibular length. In the majority of cases, postoperative malreduction was successfully corrected in the acute setting


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 1 | Pages 141 - 144
1 Jan 2002
Petersen W Hohmann G Stein V Tillmann B

We studied the vascular pattern of human posterior tibial tendons by injection techniques and immunohistochemically using antibodies against laminin. The intravascular volume of the posterior tibial tendon was determined using a new method of injection of a solution of . 99m. Tc and gelatin ink into the lower legs of cadavers. Three segments of 1 cm length from different regions of the human posterior tibial tendon were measured using a gamma well counter. The main blood supply arises from the posterior tibial artery. Blood vessels enter the paratenon of the posterior tibial tendon via a mesotenon from the posterior aspect. From the paratenon, the blood vessels penetrate the posterior tibial tendon and anastomose with a longitudinally orientated intratendinous network. The number of vessels in the substance of the tendon is consistently less than that in the surrounding paratenon. The distribution of blood vessels within the posterior tibial tendon is not homogeneous. In the retromalleolar region the intravascular volume was significantly reduced with a mean value of 15 μl/g of tendon tissue. There was no significant difference between the mean intravascular volumes of the proximal and distal areas (distal, 27.7 μl/g tendon tissue; proximal, 30 μl/g tendon tissue). The immunohistochemical investigation showed that there was no immunostaining for laminin in the anterior part of the tendon in the region where it passes behind the medial malleolus. This region is avascular. The most frequent site of rupture of the posterior tibial tendon is in the region behind the medial malleolus. A potential endogenous risk factor may be the limited healing potential of avascular tissue


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 317 - 317
1 Jul 2014
Mangnus L Meijer D Mellema J Veltman W Steller E Stufkens S Doornberg J
Full Access

Summary. Quantification of Three-Dimensional Computed Tomography (Q3DCT) is a reliable and reproducible technique to quantify and characterise ankle fractures with a posterior malleolar fragment (. www.traumaplatform.org. ). This technique could be useful to characterise posterior malleolar fragments associated with specific ankle fracture patterns. Introduction. Fixation of posterior malleolar fractures of the ankle is subject of ongoing debate1. Fracture fixation is recommended for fragments involving 25–30% of articular surface1. However, these measurements -and this recommendation- are based on plain lateral radiographs only. A reliable and reproducible method for measurements of fragment size and articular involvement of posterior malleolar fractures has not been described. The aim of this study is to assess the inter-observer reliability of Quantification using Three-Dimensional Computed Tomography (Q3DCT) –modelling. 2,3,4,5. for fragment size and articular involvement of posterior malleolar fractures. We hypothesize that Q3DCT-modelling for posterior malleolar fractures has good to excellent reliability. Patients & Methods. To evaluate inter-observer reliability of Q3DCT-modelling, we included a consecutive series of 43 patients with an ankle fracture involving the posterior malleolus and a complete radiographic documentation (radiographs and computed tomography) Fractures of the tibial plafond (pilon type fractures) were excluded. These 43 patients were divided in 3 different types (Type I, II or III) as described by Haraguchi6. Five patients of each type were randomly selected for an equal distribution of articular fragment sizes. 3D models were reconstructed by 1) creating a mask for every respective slice; 2) select the appropriate dots that separate fracture from tibialshaft; 3) connect masks of each respective slice; and 4) reconstruct a 3D-mesh. After reconstruction of 3D-models, 1) fragment volume; 2) articular surface of the posterior malleolar fragment; 3) articular surface of intact tibia and 4) articular surface of the medial malleolus were calculated by all three observers. A summary of this technique is shown on . www.traumaplatform.org. The inter-observer reliability of these measurements was calculated using the ICC, which can be interpreted as the kappa coefficient. Results. Measurements of the volume of posterior malleolar fracture fragments ranged from 357 to 2904 mm3 with an ICC of 1.00 (Confidence interval (CI) 0.999 – 1.000) Measurements of the articular surface of the posterior malleolar fracture fragment ranged from 25 to 252 mm2 with an ICC of 0.998 (CI 0.996 – 0.999); the articular surface of the intact tibia plafond ranged from 375 to 1124 mm2 (ICC 0.998, CI 0.996 – 0.999); and the articular surface of the medial malleolus ranged from 79 to 149 mm2 (ICC 0.978, CI 0.978 – 0.911). The categorical ratings for all ICC's were defined as almost perfect according to the system of Landis7. Discussion/Conclusion. This study showed that our Q3DCT-modelling technique. 2,3,4,5. is reliable and reproducible to reconstruct ankle fractures, in order to assess fracture characteristics of posterior malleolar fracture fragments. Future research will focus on the association between overall ankle fracture patterns according to Lauge-Hansen, and characterization of posterior malleolar fragment morphology. We hypothesise that supination-exorotation type fractures are associated with smaller (in volume and involved articularsurface) “pull-off” fragments, while pronation-exorotation type ankle fractures are associated with larger (in volume and involved articular surface) “push-off” fragments. The clinical relevance might be that smaller “pull-off” type fractures benefit from positioning screws, while larger “push-off” type fractures require direct open reduction and internal fixation of the posterior malleolar fragment


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 53 - 53
1 Apr 2018
Herteleer M Quintens L Carrette Y Vancleef S Vander Sloten J Hoekstra H
Full Access

Purpose. Addressing posterior tibial plateau fractures is increasingly recognized as an important prognostic factor for functional outcome. The treatment of posterior tibial plateau fractures is rather demanding and the implants are still standard, off-the-shelf implants. This emphasizes the need for a more thorough morphological study of the posterior tibial plateau, in order to treat these posterior fractures more adequately. We aimed to demonstrate anatomical variations of the tibia in order to develop better implants. Method. After approval of the ethical committee 22 historically available CT scans of intact left tibia”s were segmented using Mimics (Materialise, Belgium). In order to perform principal component analysis, corresponding meshes are necessary. Mesh correspondence was achieved by deforming one selected source tibia to every other target tibia, through non rigid registration. The non-rigid registration algorithm was based on the algorithm described by Amberg et al (ref). After performing the non-rigid registration, principal component analysis was performed in Matlab (Mathworks, USA). Results. The first 3 components account for 98,1% of the anatomical shape variation of the tibia. The first principal component accounts for 95,4, the second accounts for 1,6% and the third component accounts for the remaining 1,1% of variation. In the first principal component the most marked variation was the length and the shaft width. Shorter tibia”s have a steeper and more angled posterior medial and lateral plateau as where longer tibia”s have a more rounded posterior tibia plateau. On the distal end, the tip of the medial malleolus is more prominent in shorter tibia”s than in longer tibia”s. The orientation of the tibiofibular joint is directed more posteriorly in larger tibias where it is orientated more laterally in smaller tibia”s. The slope of the medial and lateral tibia plateau is not related to the length or width of the plateau. The second principal component shows a relationship between a valgus shaped tibia shaft and its relation to a relatively smaller medial plateau”s compared with straight tibia”s of the same length. Valgus shaped, small tibia shafts have more posteriorly tilted lateral plateau”s compared with straight, broad shafted tibias. The third principal component shows that an angular shaped posterior tibia plateau is related to a more increased anterior bowing. The increase in the posterior tilt is mostly marked in the medial tibia plateau. Conclusion. The majority of tibia shape variations is directly related to the length of the shaft. The clinically known varus and valgus deformations represent only a small percentage of the total variation. Nevertheless, their variation within the second component is large and has a direct relation to the morphology of the tibia plateau. This data coud furthermore be used to improve implant design


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 176 - 178
1 Jan 2010
Heidari N Pichler W Grechenig S Grechenig W Weinberg AM

Injection or aspiration of the ankle may be performed through either an anteromedial or an anterolateral approach for diagnostic or therapeutic reasons. We evaluated the success of an intra-articular puncture in relation to its site in 76 ankles from 38 cadavers. Two orthopaedic surgical trainees each injected methylene blue dye into 18 of 38 ankles through an anterolateral approach and into 20 of 38 through an anteromedial. An arthrotomy was then performed to confirm the placement of the dye within the joint.

Of the anteromedial injections 31 of 40 (77.5%, 95% confidence interval (CI) 64.6 to 90.4) were successful as were 31 of 36 (86.1%, 95% CI 74.8 to 97.4) anterolateral injections. In total 62 of 76 (81.6%, 95% CI 72.9 to 90.3) of the injections were intra-articular with a trend towards greater accuracy with the anterolateral approach, but this difference was not statistically significant (p = 0.25). In the case of trainee A, 16 of 20 anteromedial injections and 14 of 18 anterolateral punctures were intra-articular. Trainee B made successful intra-articular punctures in 15 of 20 anteromedial and 17 of 18 anterolateral approaches. There was no significant difference between them (p = 0.5 and p = 0.16 for the anteromedial and anterolateral approaches, respectively). These results were similar to those of other reported studies. Unintended peri-articular injection can cause complications and an unsuccessful aspiration can delay diagnosis. Placement of the needle may be aided by the use of ultrasonographic scanning or fluoroscopy which may be required in certain instances.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 7 | Pages 1041 - 1044
1 Jul 2010
Loughenbury PR Harwood PJ Tunstall R Britten S

Anatomical atlases document safe corridors for placement of wires when using fine-wire circular external fixation. The furthest posterolateral corridor described in the distal tibia is through the fibula. This limits the crossing angle and stability of the frame. In this paper we describe a new, safe Retro-Fibular Wire corridor, which provides greater crossing angles and increased stability. In a cadaver study, 20 formalin-treated legs were divided into two groups. Wires were inserted into the distal quarter of the tibia using two possible corridors and standard techniques of dissection identified the distance of the wires from neurovascular structures.

In both groups the posterior tibial neurovascular bundle was avoided. In group A the peroneal artery was at risk. In group B this injury was avoided. Comparison of the groups showed a significant difference (p < 0.001).

We recommend the Retro-Fibular wire technique whereby wires are inserted into the tibia mid-way between the posteromedial border of the fibula and the tendo Achillis, at 30° to 45° to the sagittal plane, and introduced from a posterolateral to an anteromedial position. Subsequently, when using this technique in 30 patients, we have had no neurovascular complications or problems relating to tethering of the peroneal tendons.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1114 - 1118
1 Aug 2008
Ling ZX Kumar VP

Compartment syndrome of the foot requires urgent surgical treatment. Currently, there is still no agreement on the number and location of the myofascial compartments of the foot. The aim of this cadaver study was to provide an anatomical basis for surgical decompression in the event of compartment syndrome. We found that there were three tough vertical fascial septae that extended from the hindfoot to the midfoot on the plantar aspect of the foot. These septae separated the posterior half of the foot into three compartments. The medial compartment containing the abductor hallucis was surrounded medially by skin and subcutaneous fat and laterally by the medial septum. The intermediate compartment, containing the flexor digitorum brevis and the quadratus plantae more deeply, was surrounded by the medial septum medially, the intermediate septum laterally and the main plantar aponeurosis on its plantar aspect. The lateral compartment containing the abductor digiti minimi was surrounded medially by the intermediate septum, laterally by the lateral septum and on its plantar aspect by the lateral band of the main plantar aponeurosis. No distinct myofascial compartments exist in the forefoot.

Based on our findings, in theory, fasciotomy of the hindfoot compartments through a modified medial incision would be sufficient to decompress the foot.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 717 - 725
1 May 2010
Kamali A Hussain A Li C Pamu J Daniel J Ziaee H Daniel J McMinn DJW

Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles.

There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants.

Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 736 - 740
1 May 2005
Tochigi Y Rudert MJ Brown TD McIff TE Saltzman CL

When performing the Scandinavian Total Ankle Replacement (STAR), the positioning of the talar component and the selection of mobile-bearing thickness are critical. A biomechanical experiment was undertaken to establish the effects of these variables on the range of movement (ROM) of the ankle.

Six cadaver ankles containing a specially-modified STAR prosthesis were subjected to ROM determination, under weight-bearing conditions, while monitoring the strain in the peri-ankle ligaments. Each specimen was tested with the talar component positions in neutral, as well as 3 and 6 mm of anterior and posterior displacement. The sequence was repeated with an anatomical bearing thickness, as well as at 2 mm reduced and increased thicknesses. The movement limits were defined as 10% strain in any ligament, bearing lift-off from the talar component or limitations of the hardware.

Both anterior talar component displacement and bearing thickness reduction caused a decrease in plantar flexion, which was associated with bearing lift-off. With increased bearing thickness, posterior displacement of the talar component decreased plantar flexion, whereas anterior displacement decreased dorsiflexion.