Advertisement for orthosearch.org.uk
Results 1 - 20 of 21
Results per page:
Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_8 | Pages 11 - 11
1 Jun 2015
McMenemy L Masouros S Stapley S Clasper J
Full Access

Military personnel operating on high speed marine craft are exposed to Whole-Body Vibration (WBV). Additionally planing craft operate at speeds with minimal contact of the hull with warer making the crew vulnerable to mechanical shock. An association between Low Back Pain (LBP) and exposure to WBV has been extensively reported in civilian literature. LBP is reported by military personnel operating on planing craft leading to downgrades and potential discharge. There is a clear need to understand the impact prolonged exposure has on our population operating these craft. We performed a bibliographical search of the PubMed database for records using a combination of keywords. Abstracts were screened for relevance and references cited in retrieved papers reviewed. There is no consensus in the literature on the potentially pivotal pathological process behind the association. Evidence from professional driving suggests current safe operating exposure levels require review to protect against long-term damage however with little evidence concerning the unique environment in which boats crews operate, the parity of these environments require investigation to allow direct comparison. Due to the prevalence of LBP in this population a need exists to establish the pathological process and add to the evidence base driving safe operating exposure levels.


Abstract. Source of Study: London, United Kingdom. This intervention study was conducted to assess two developing protocols for quadriceps and hamstring rehabilitation: Blood Flow Restriction (BFR) and Neuromuscular Electrical Stimulation Training (NMES). BFR involves the application of an external compression cuff to the proximal thigh. In NMES training a portable electrical stimulation unit is connected to the limb via 4 electrodes. In both training modalities, following device application, a standardised set of exercises were performed by all participants. BFR and NMES have been developed to assist with rehabilitation following lower limb trauma and surgery. They offer an alternative for individuals who are unable to tolerate the high mechanical stresses associated with traditional rehabilitation programmes. The use of BFR and NMES in this study was compared across a total of 20 participants. Following allocation into one of the training programmes, the individuals completed training programmes across a 4-week period. Post-intervention outcomes were assessed using Surface Electromyography (EMG) which recorded EMG amplitude values for the following muscles: Vastus Medialis, Vastus Lateralis, Rectus Femoris and Semitendinosus. Increased Semitendinosus muscle activation was observed post intervention in both BFR and NMES training groups. Statistically significant differences between the two groups was not identified. Larger scale randomised-controlled trials are recommended to further assess for possible treatment effects in these promising training modalities


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 16 - 16
7 Nov 2023
Khumalo M
Full Access

Low back pain is the single most common cause for disability in individuals aged 45 years or younger, it carries tremendous weight in socioeconomic considerations. Degenerative aging of the structural components of the spine can be associated with genetic aspects, lifetime of tissue exposure to mechanical stress & loads and environmental factors. Mechanical consequences of the disc degenerative include loss of disc height, segment instability and increase the load on facets joints. All these can lead to degenerative changes and osteophytes that can narrow the spinal canal. Surgery is indicated in patients with spinal stenosis who have intractable pain, altered quality of life, substantially diminished functional capacity, failed non-surgical treatment and are not candidates for non-surgical treatment. The aim was to determine the reasons for refusal of surgery in patients with established degenerative lumber spine pathology eligible for surgery. All patients meeting the study criteria, patients older than 18 years, patients with both clinical and radiological established symptomatic degenerative lumbar spine pathology and patients eligible for surgery but refusing it were recruited. Questionnaire used to investigate reasons why they are refusing surgery. Results 59 were recruited, fifty-one (86.4 %) females and eight (13.6 %) males. Twenty (33.8 %) were between the age of 51 and 60 years, followed by nineteen (32.2 %) between 61 and 70 years, and fourteen (23.7 %) between 71 and 80 years. 43 (72 %) patients had lumber spondylosis complicated by lumber spine stenosis, followed by nine (15.2 %) with lumbar spine spondylolisthesis and four (6.7 %) had adjacent level disease. 28 (47.4 %) were scared of surgery, fifteen (25.4 %) claimed that they are too old for surgery and nine (15.2 %) were not ready. Findings from this study outlined that patients lack information about the spinal surgery. Patients education about spine surgery is needed


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 49 - 49
1 Jan 2016
Takeda M Yoshinori I Hideo N Junko S
Full Access

Introduction. The low-contact stress (LCS) knee prosthesis is a mobile-bearing design with modifications to the tibial component that allow for meniscal-bearing (MB) or rotating-platform (RP). The MB design had nonconstrained anteroposterior and rotational movement, and the RP design has only nonconstrained rotational movement. The anterior soft tissues, including patellar tendon (PT), prevent anterior dislocation of the MB. The PT may consistently be exposed to overstressing. Therefore, we hypothesized that the PT thickness and width in MB prosthesis revealed more morphological changes than those of RP prosthesis due to degeneration of the PT induced by much mechanical stress of the MB movement. To confirm this hypothesis, we analyze the PT thickness and width induced by mobile-bearing inserts. Objectives. Sixty LCS prostheses in 30 patients were analyzed. The average follow-up time was 61 months. MB prosthesis was used on one side of the knee and RP prosthesis was used on the contralateral side of the knee. All patients were chosen from group with no clinical complication, and all had achieved passive full extension and at least 90°of flexion. The average Hospital for Special Surgery Score was 94.6 ± 2.7. Methods. We measured the thickness and width of PT at joint line level, which were confirmed by sagittal section using ultrasound in knee extension between MB and RP design prosthesis. Results. The mean thickness of PT was 4.7 mm (1.2) with MB and 4.7 mm (1.0) with RP design prosthesis. The mean width of PT was 30.6 mm (3.2) with MB and 31.3 mm (3.5) with RP design prosthesis. No significant differences were found between both groups. Conclusion. The current results showed that the PT thickness and width in MB prosthesis did not reveal more morphological changes than those of RP prosthesis due to degeneration of the PT induced by much mechanical stress of the MB movement. The possible reasons are the following: (1) We did not remove infra-patellar fat pad, which might play shock absorber of mechanical stress from MB, and prevent from significant degeneration of PT, (2) MB inserts did not stimulate the middle of the PT directly, unlike LCS A/P-Glide inserts, and might come into contact with the both ends of the PT and (3) MB inserts did not move so as to cause degeneration in the PT


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 522 - 522
1 Dec 2013
Sato T Ito H Tanino H Nishida Y
Full Access

[Introduction]. It is said that the mechanical stress is a main factor to advance degenerative osteoarthritis. Therefore, to keep the joint stability is very important to minimize mechanical stress. Methods to evaluate bone-related factor are almost established, especially in hip dysplasia. On the other hand, it is unclear how much each soft tissue contribute to the joint stability. In this study we evaluated the soft tissue contribution for hip joint stability by distraction testing using MTS machine. [Materials & Methods]. We used seven fresh frozen hips from four donors, whose race was all western and reason of death was not related to hip disease in all cases. Average age of them at death was 83 years old. Mean average weight and height were each 52 kg and 162 cm. We retrieved hemi pelvis and proximal femur which kept hip joint intact. We removed all other soft tissue except iliofemoral ligament, pubofemoral ligament, ischiofemoral ligament and capsule. The hemi-pelvis mounted on angular-changeable fixator and the femur fixed to MTS machine (Figure 1). XY sliding table was used to minimize the horizontal direction stress during distraction. MTS machine was set to pull the femur parallel to its shaft by 0.4 mm/sec velocity against pelvis after 10N compression and to keep 5 mm distance for 5 seconds. We measured the force at 1 mm, 3 mm, 5 mm distraction. In case the joint was dislocated, the maximum force just before dislocation was recorded. The specimen was changed its posture as neutral (flexion0° abduction0° external rotation0°), flexion (flexion60° abduction0° external rotation0°), abduction (flexion0° abduction30° external rotation0°) and extension (extension20° abduction0° external rotation0°). Each position was measured in six sequential conditions, which are normal, Incised iliofemoral ligament, Circumferentially incised capsule, resected capsule, labral radial tear and resected labrum. After measurement joint surface was observed to evaluate the joint condition. [Results]. We excluded the one specimen two hips by osteoarthritic change of joint surface. The average force needed for 5 mm distraction in normal condition at neutral, flexion, extension and abduction posture was each 95.8N, 52.7N, 162.8N and 94.2N. The force was biggest in extension posture and smallest in flexion posture. The force was statistically reduced from 95.8N to 31.5N after iliofemoral ligament incision in neutral position. The force was also statistically reduced from 145.6N to 31.9N after Circumferential capsule incision in extension posture (Figure 2). In all posture, traction force was reduced after capslotomy and all hip dislocated in all cases. [Discussion]. We could conclude that iliofemoral ligament works much in neutral and extension posture, and capsule helps its work in extension more than in neutral posture. We have reported the zona orbicularis will be important as joint stabilizer before. Capsule including zona orbicularis makes hip joint more stable in any posture because dislocation happened easily after capsule resection in all posture


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 67 - 67
1 May 2019
Lewallen D
Full Access

The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating preoperative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5) Impaction grafting; 6) Porous metal cones or sleeves 7) Massive structural allograft-prosthetic composites; 8) Custom implants. Of these, use of uncemented highly porous metal metaphyseal cones in combination with an initial cemented or partially cemented implant has been shown to provide versatile and highly durable results for a range of bone defects including those previously requiring structural bone graft. The hybrid fixation combination of both cement and cementless fixation of an individual tibial or femoral component has emerged as a frequent and often preferred technique. Initial secure and motionless interfaces are provided by the cemented portions of the construct, while subsequent bone ingrowth to the cementless porous metal portions is the key to long term stable fixation. As bone grows into the porous portions there is off loading and protection of the cemented interfaces from mechanical stresses. While maximizing support on intact host bone has been a longstanding fundamental principle of revision arthroplasty, this is facilitated by the use of metaphyseal cones or sleeves in combination with initial fixation into the adjacent diaphysis. Preoperative planning is facilitated by good quality radiographs, supplemented on occasion by additional imaging such as CT. Fluoroscopically controlled x-ray views may assist in diagnosing the loose implant by better revealing the interface between the implant and bone and can facilitate accurate delineation of the extent of bone deficiency present. Part of the preoperative plan is to ensure adequate range and variety of implant choices and bone graft resources for the planned reconstruction allowing for the potential for unexpected intraoperative findings such as occult fracture through deficient periprosthetic bone. While massive bone loss may compromise ligamentous attachment to bone, in the majority of reconstructions, the degree of revision implant constraint needed for proper balancing and restoration of stability is independent of the bone defect. Thus, some knees with minimal bone deficiency may require increased constraint due to the status of the soft tissues while others involving very large bone defects, especially of the cavitary sort, may be well managed with minimal constraint


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 15 - 15
1 Apr 2018
Lee K
Full Access

Anterior cruciate ligament (ACL) reconstruction is the current standard of care for ACL tears. However, the results are not consistently successful, autografts or allografts have certain disadvantages, and synthetic grafts have had poor clinical results. The aim of this study was to determine the efficacy of tissue engineering decellularized tibialis tendons by recellularization and culture in a dynamic tissue bioreactor. To determine if recellularization of decellularized tendons combined with mechanical stimulation in a bioreactor could replicate the mechanical properties of the native ACL and be successfully used for ACL reconstruction in vivo. Porcine tibialis tendons were decellularized and then recellularized with human adult bone marrow-derived stem cells. Tendons were cultured in a tissue bioreactor that provided biaxial cyclic loading for up to 7 days. To reproduce mechanical stresses similar to hose experienced by the ACL within the knee joint, the tendons were subjected to simultaneous tension and torsion in the bioreactor. Expression of tendon-specific genes, and newly synthesized collagen and glycosaminoglycan (GAG) were used to quantify the efficacy of recellularization and dynamic bioreactor culture. The mechanical strength of recellularized constructs was measured after dynamic stimulation. Finally, the tissue-engineered tendons were used to reconstruct the ACL in mini-pigs and mechanical strength was assessed after three months. Dynamic bioreactor culture significantly increased the expression of tendon-specific genes, the quantity of newly synthesized collagen and GAG, and the tensile strength of recellularized tendons. After in vivo reconstruction, the tensile strength of the tissue-engineered tendons increased significantly up to 3 months after surgery and were within 80% of the native strength of the ACL. Our translational study indicates that the recellularization and dynamic mechanical stimuli can significantly enhance matrix synthesis and mechanical strength of decellularized porcine tibialis tendons. This approach to tissue engineering can be very useful for ACL reconstruction and may overcome some of the disadvantages of autografts and allografts


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 2 - 2
1 May 2016
Affatato S Jaber S Paola T
Full Access

Introduction. Wear and survival of total joint replacements do not depend on the duration of the implant in situ, but rather on the amount of its use, i.e. the patient's activity level [1]. With this in mind, the present study was driven by two questions: (1) How does total knee replacement (TKR) respond to the simulation of daily highly demanding activities? (2) How does implant size affect wear response of total knee replacement (TKR)?. Materials & Methods. Two sets of the same total knee prosthesis (TKP), different in size (#2 and #6), equal in design, were tested on a three-plus-one knee joint simulator for two million cycles using a highly demanding daily load waveform [2], replicating a stair-climbing movement. The results were compared with two sets of TKP previously tested with the ISO level walking task. Gravimetric and micro-Raman spectroscopic analyses were carried out on the polyethylene inserts. Visual comparison with in vivo explants was carried out and digital microscopy was used to characterize the superficial structure of all the TKPs and explanted components. Results. The average volumetric loss of the UHMWPE inserts tested for 2Mc under ISO standard level walking were 21.36 ±1 mm3 and 41 ±2 mm3 for the size #2 and size #6, respectively. The average volumetric mass loss after two million cycles for the size #2 under the stair climbing simulation was 44 ±6 mm3. Microscope examinations showed some deep scratches along the flexion/extension movements for all the components. A decrease in crystallinity, induced by mechanical stress was observed on all polyethylene components and was quantitatively confirmed by the orthorhombic fraction αo value. Conclusion. These preliminary results showed that under more severe conditions for size #2, the material properties change according to a different wear mechanism and a decrease in crystallinity occurs. Under the ISO 14243-2 load profile, an increase in crystallinity was observed; whereas under the more demanding conditions, a decrease in crystallinity occurs. Analyses on the size #6 component are in progress


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 47 - 47
1 Nov 2016
Sharma A Sharma R Sundararajan K Perruccio A Kapoor O Gandhi R
Full Access

In addition to mechanical stresses, an inflammatory mediated association between obesity and knee osteoarthritis (OA) is increasingly being recognised. Adipokines, such as adiponectin and leptin, have been postulated as likely mediators. Clinical and epidemiological differences in OA by race have been reported. What contributes to these differences is not well understood. In this study, we examined the profile of adipokines in knee synovial fluid (SF) and the gene expression profile of the infra-patellar fat pad (IFP) by race among patients with end-stage knee OA scheduled for knee arthroplasty. Age, sex, weight and height (used to derive body mass index (BMI)) and race (White, Asian and Black) were elicited through self-report questionnaire prior to surgery. SF and IFP samples were collected at the time of surgery. Adipokines (adiponectin and leptin) were examined in the SF using MAGPIX Multiplex platform. IFP was profiled using Human Adipogenesis PCRArray and genes of interest were further validated via quantitative relative RT-PCR using Student's t-test. Overall differences in adiponectin and leptin concentrations were tested across race. Linear regression modeling was used to investigate the association between adiponectin and leptin concentrations (outcomes) and race (predictor; referent group: White), adjusting for age, sex and BMI. 67 patients (18 White, 33 Asian, 16 Black) were included. Mean SF adiponectin concentration was greatest in Whites (1175.05 ng/mL), followed by Blacks (868.53 ng/mL) and Asians (702.23 ng/mL) (p=0.034). The mean SF leptin concentration was highest in Blacks (44.88 ng/mL), followed by Whites (29.86 ng/mL) and Asians (20.18 ng/mL) (p=0.021). Regression analysis showed Asians had significantly lower adiponectin concentrations compared to Whites (p<0.05). However, leptin concentrations did not differ significantly by race after adjusting for covariates. Testing of the IFP, using the Adipogenesis PCRArray, showed significant higher expression of LEP gene (leptin, p=0.03) in Asians (n=4) compared to Whites (n=4). There appears to be important racial differences in the SF adiponectin profile among individuals with end-stage knee OA. Differential gene expression in the IFP across racial groups could be a potential contributory source for the noted SF variations. Further work to determine the source and function of adipokines in knee OA pathophysiology across racial groups is warranted


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 77 - 77
1 May 2016
Comitini S Tigani D Leonetti D Amendola L Commessatti M
Full Access

Introduction. Acute poliomyelitis is a very rare disease in western countries, however the remnant of the pathology can be find among the adult patients. In poliomyelitis, sensation is normal and patients may suffer from painful etiologies. Total knee arthroplasty (TKA) with non-hinged or semi hinged prosthesis systems may be a good options to relief the pain in poliomyelitic patients, however the knee remains unstable. Using the hinged system implant may be the good option to resolve the late. Although the main concern in case of hinged implant usage is the mechanical stress which is directly transferred to the bone surface in contact with the implant. This may leads to implant mobilization and consequently failure. Methods and Materials. From 2004 to 2014, 14 TKA were performed in poliomyelitic patients with secondary knee pain. All patients were presented with extensor compartment hyposthenia and reduced antigravity function. In all patients a third generation rotating hinged knees (RHK) implant system (Zimmer, Warsaw, IN, USA) was applied. Bilateral TKA was performed in only one case. The mean age at the time of surgery was 56 years (ranged 48–77). Mean follow-up was 60 months (24–112). Results Due to post-operative infection, one patient underwent knee arthrodesis and excluded from the study. In one case, patellar fracture occurred 3 month following the surgery and treated non-surgically. Pain relief was observed in all patients following the surgery without any major complication. Mean objective score according to knee society knee scoring system was improved from 28 (16–51) preoperatively to 79 (72–88) postoperatively. Mean functional score was improved from 24 (5–35) preoperatively to 66 (50–70) postoperatively. At last follow up the mean range of motion was 90° (75°−100°). Following radiographic control at last follow-up all implants was stable without any sign of failure such as mobilization, radiolucency line or osteolysis. Conclusion. Providing stable knee implant system is the most important factor in addition to pain relief in case of poliomyelitic patients with knee pain. In our experience, third generation RHK supplied satisfactory clinical results in poliomyelitic patients supplying good implant stability without interfere with existing intrinsic stability of the lower limb. We believe that good results were achieved due to particular specification of RHK implant including mild 3° of hyperextension and weight distribution mode in which 95% transfer to polyethylene insert and only 5% to hinged compartment that help to restore the stability in such a particular patients also in case of late post-polio syndrome


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 62 - 62
1 May 2016
Munir S Bertollo N Pelletier M Walsh W
Full Access

Introduction. Modern hip replacements all have encapsulated the design concept of proximal modularity. The factors contributing to the increased wear and corrosion at the taper junction are trunnion geometry, surface characteristics, head size, impaction forces, and material coupling. This study maps the inferior and superior region of the trunnion and bore to provide a visual identification of the corrosion severity. The corrosion/wear generated inferiorly and superiorly at the bore and trunnion will be quantified to understand how corrosion is affected by mechanical stresses in relation to anatomical orientation. Methodology. Three neck tapers generated from bar stock containing a threaded trunnion Ti-6Al-4V and 3× 32mm femoral heads (Co-Cr-Mo) with a +4 offset manufactured by Signature Orthopaedics were used within this study. Rectangular Rozzette strain gauges (Tokyo Sokki Kenkyujo Co., Ltd.) were adhered onto the inferior and superior sections of the neck section. The tapers were fatigued in accordance to ISO 7206 at 5Hz for 5 million cycles at 37 degrees Celsius in phosphate buffered saline. The tapers were sectioned from the center of the femoral head to split both trunnion and bore into superior and inferior components. SEM imaging of all surface areas for each component, per taper (4) was done under ×100 magnification. The images were used to quantify the corrosion present across the surface area using a MATLAB based program called Histomorph. To obtain a visual observation of the variation of corrosion across the bore and trunnion the proximal, medial, and distal regions were mapped together for both the superior and inferior sections. Results. The superior region of the trunnion had a dominant tensile strain in comparison to the inferior region, which had a dominant compressive strain. Corrosion/wear of the inferior section of the trunnion was significantly higher (p<0.05) in comparison to the superior section (Figure 1). The bore had more corrosion/wear on the superior side in comparison to the inferior side however the difference was not significant. The mapping of the trunnion shows corrosion/wear along the whole length of the inferior side and dominantly at the distal region for the superior side (Figure 2 & 3). The superior section of the trunnion had higher corrosion/wear damage across the center and distal regions of the trunnion. The subdivision of the superior section reveals that the majority of the distal section contains higher wear/corrosion damage. However the central region also has sufficient corrosion/wear extending across the width of the bore. Conclusion. The corroded regions have shown that the type of stress present on the regions of the taper junction determines the severity of corrosion. The inferior section of the trunnion under compressive stress has significantly (p<0.05) higher corrosion/wear in comparison to the superior section dominated by tensile stress


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVII | Pages 37 - 37
1 May 2012
Cullen E O'Flaharta C Murphy M Barry F Kerin M Curtin W
Full Access

Epidemiological studies have shown that accumulated mechanical stress is a risk factor for the development of osteoarthritis (OA). This debilitating progressive clinical condition affects a broad spectrum of patients and will ultimately lead to definitive arthroplasty surgery as the endpoint treatment option in many cases. The aim of this study is to establish a graded murine model of OA by medial meniscotibial destabilisation of the knee joint and in phase two, to investigate the migration and engraftment of radioisotope labeled mesenchymal stem cells (MSCs) at varying points of disease progression. The first phase of the study was to establish the murine model, an Irish first. All procedures were performed aseptically under general anaesthesia via a midline medial parapatellar approach on a murine fracture table. Microsurgical dissection was performed through necropsy analysed layers to the joint space and the meniscotibial ligament identified and transected. Validated histopathological analysis was performed at two, four, eight and twelve weeks postoperatively. The results showed a gradation of OA changes from mild unicondylar changes at two weeks, moderate unicompartmental change at four, severe unicompartmental change at eight and severe bicompartmental change at twelve weeks post-operatively. In vivo Bazooka-Single Photon Emission Computed Tomography (SPECT) (Phase 2) imaging studies are currently ongoing following the model establishment


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 148 - 148
1 Jan 2016
Gao B Angibaud L Johnson D
Full Access

Introduction. Total knee arthroplasty (TKA) implant systems offer a range of sizes for orthopaedic surgeons to best mimic the patient's anatomy and restore joint function. From a biomechanical perspective, the challenge on the TKA implants is affected by two factors: design geometry and in vivo load. Larger geometry typically means more robust mechanical structure, while higher in vivo load means greater burden on the artificial joint. For an implant system, prosthesis geometry is largely correlated with implant size, while in vivo load is affected by the patient's demographics such as weight and height. Understanding the relationships between implant size and patients' demographics can provide useful information for new prosthesis design, implant test planning, and clinical data interpretation. Utilizing a manufacturer supported clinical database, this study examined the relationships between TKA patient's body weight, height, and body mass index (BMI) and the received implant size of a well-established implant system. Methods. A multi-site clinical database operated by Exactech, Inc. (Gainesville, FL, USA) was utilized for this study. The database contains patient information of Optetrak TKA implant recipients from over 30 physicians in US, UK, and Colombia since 1995. Nine implant sizes (0, 1, 2, 2.5, 3, 3.5, 4, 5 and 6) are seen in the database, while size 0 was excluded due to very low usage. Taking primary TKA only, a total of 2,713 cases were examined for patient's body weight, height, BMI, and their relationships with the implant size. Results. Both patient's weight and height strongly correlate with implant size (R. 2. »0.95 for both parameters with a linear regression). On average, the increase of one implant size corresponds to an increase of 7.4 kg in patient's weight and 7.0 cm in patient's height (Figure 1). However, there is almost no dependency between patient's BMI and implant size (R. 2. <0.05), and the regression line is almost flat (k=-0.08) (Figure 1). Discussion. Based on the Exactech database, this study revealed that TKA patients' weight and height increase close-to-linearly with implant size, but BMI stays fairly constant. These relationships are not all intuitive mathematically, and are likely simplified representations of higher order functions within the particular variable ranges. The most interesting finding was the independence of BMI on implant size, which provides a favorable validation of the geometry design and size selection of the Optetrak implant system. BMI (kg/m. 2. ) has the same unit dimension as stress (N/m. 2. ) excluding the constant g (9.8 N/kg). Since implant geometry is generally proportional to patient height, and joint force is generally proportional to patient weight, the mechanical stress imposed on the implant would be generally proportional to patient's BMI. The fact that BMI stays constant across sizes indicates that the implant system would experience a similar level of stress across all sizes, which has been previously observed in femorotibial contact stress analyses on the Optetrak system. This study showed that a heavier TKA patient statistically tends to receive a larger implant which, depending on implant design, will provide larger contact area and compensate for the higher load


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 108 - 108
1 Dec 2013
Pourmoghaddam A Kreuzer SW Freedhand A
Full Access

INTRODUCTION:. Proximally coated femoral stems have been designed to address the shortcomings of fully coated femoral stems including proximal femoral stress shielding. The design improvements leading to more optimized proximal femoral loading condition in the “Neck preserving stems” have increased the popularity of such implants (e.g., Minihip). Neck preserving stems depict better biological outcomes compared to more traditional stems . 1. by utilizing more natural mechanical stress/strain distribution over the femur. These stems provide significant reduction in both torsional and bending moments at the stem/bone interface. This reduction may result in decreasing the micromotion and failure of osseointegration . 1. Figure 1 demonstrates the differences between the cutting areas of a neck preserving versus traditional stem. The Minihip stem demonstrate a curved structure that is designed to match the shape of the femoral neck. The stability of the implant is achieved in the femoral neck and intertrochanteric area of the proximal femur. Further investigations are needed to establish a solid ground for the outcome of these stem in total hip arthroplasty (THA). OBJECTIVES:. The current study was conducted to report the short-term clinical outcome of the THA by using Minihip neck preserving stem. METHODS:. In the current study the short-term clinical outcomes of the patients in the patients who were treated by Minihip THA is analyzed. All patients were evaluated via Hip Disability and Osteoarthritis Outcome Score (HOOS). In addition we explored the effect of obesity on the perceived difficulty of surgery performance. A multinomial logistic regression was used in addition to a multivariate repeated ANCOVA was performed to determine significance of the demographics (i.e., BMI, Height, Weight, Age, and Gender). The signed consent was obtained from each participant. RESULTS:. 26 of the patients reported their symptoms to evaluate the HOOS (20 male, 6 female, Age 61.7 ± 8.5 years and BMI of 27.5 ± 3.88). Six patients demonstrated obesity (BMI>30). Post-operative data were collected at a mean followup time of 3 months. The results indicated significantly higher HOOS in individuals during postop depicting better quality of life (F(1, 25) = 186.695, p < .001), lower pain (F(1,25) = 249.317, p < .001), and higher activity level (F(1,25) = 202.233, p < .001). The increase in the performance of the patients however was not affected by the obesity of the individuals. We have also explored the effect of BMI on the difficulty of the surgery perceived by the surgeon and found that the surgeries were more difficult in obese patients (p = .023). CONCLUSION:. In this pilot study we have demonstrated that Minihip has the potential to exhibit excellent short-term clinical outcome in THA. In our study all individuals reported better quality of life after receiving the surgery. Future study should be conducted on comparing the differences in the outcome of the THA between commonly used implants and neck preserving stems


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 393 - 393
1 Dec 2013
Murphy S Le D
Full Access

Introduction. Adverse Local Tissue Reactions (ALTR) have been reported in association with both wear and corrosion. Tissue reactions have been reported in association with corrosion at CoCr head-CoCr neck, CoCr head-TiAl6V4 neck, and CoCr modular neck on beta-titanium (TMZF) stem junctions. The current abstract reports on 3 cases of ALTR in association with CoCr modular necks on convention titanium (TiAl6V4) stem junctions. Case 1. A 67 year old male (87 kg, 1.73 m, BMI 29.1) presented with new onset hip irritation 11 months after surgery. Radiographs show no abnormalities. Further investigation revealed the following: ESR = 95, CRP = 5, Cr level = 1.0, Co level = 4.1, leukocyte transformation testing = highly reactive to nickel. Hip aspiration was culture negative with 11,250 wbc. Metal artifact reduction MR showed cystic local reaction in the region of the greater trochanter. Case 2. A 52 year old male (89 kg, 1.83 m, BMI 26.5) presented with new onset hip irritation 30 months after surgery. Radiographs show no abnormalities. Further investigation revealed the following: ESR = 7, CRP = 5.4, Cr level = 2.1, Co level = 4.8, leukocyte transformation testing = reactive to nickel. Hip aspiration was culture negative with 3995 wbc. Metal artifact reduction MR showed cystic local reaction in the region of the iliopsoas. Case 3. A 52 year old male (104 kg, 1.85 m, BMI 30.1) presented with new onset hip irritation 26 months after surgery. Radiographs show no abnormalities. Further investigation revealed the following: ESR = 33, CRP = 34.9, Cr level = 1.0, Co level = 3.7, leukocyte transformation testing = no reactivity to any of the biomaterials. Hip aspiration was culture negative with 3,780 wbc. Metal artifact reduction MR showed cystic local reaction in the region of the iliopsoas. Discussion. All three of these patients are scheduled for revision surgery. All three had ceramic-ceramic bearings. We have experience with 1029 ceramic-ceramic THA with fixed neck conventional titanium and modular titanium neck implants with minimum 2 yr f/u and have never diagnosed an adverse reaction in any of these patients. It is possible that corrosion at the CoCr neck on TiAl6V4 stem junction is the root cause of these reactions. Although the incidence of diagnosed reactions is roughly 1%, it appears that the use of CoCr at any junction under significant mechanical stress can result in adverse local tissue reaction and therefore should either be avoided or used with great caution and compelling indications


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 46 - 46
1 Aug 2013
Khan M Jilani L Deep K
Full Access

Introduction. Malalignment of lower limb is a common feature in patients with osteoarthritis (OA). This, either cause or effect of OA, is known to alter the normal anatomy of knee and affects progression of wear and tear in mechanically stressed compartment. We investigated the relationship of mechanical axis to wear and tear in varus, neutral and valgus knees. Materials and Methods. A retrospective analysis of 136 consecutive patients, with OA, who underwent total knee replacement using computer navigation. The thickness of medial and lateral cuts of distal femur and proximal tibia were recorded. Pre-op coronal deformity was assessed using long leg radiographs and Femoral Tibial Mechanical Angle (FTMA) calculated. Patients were evaluated as one group and three subgroups based on preop varus, neutral or valgus lower limb alignment. Student t test and Pearson's correlation coefficient were used for statistical analysis. Results. When considered as a whole group (136 patients) there was a significant difference between the medial and lateral cuts on both femoral and tibial side (p <0.001). We also found a significant negative correlation between FTMA and femoral lateral cut (r = −0.45). In varus group (103 patients) tibial medial and lateral cuts were significantly different (p<0.05) while there was no significant difference in femoral medial and lateral cuts. In valgus group (n=23) there was a significant difference between the femoral medial and lateral cuts (p<0.0001) while no significant difference was found between tibial medial and lateral cuts. Intergroup comparison showed that there was a significant difference between the varus and valgus group with regards to femoral medial cut, femoral lateral cut and tibial medial cut (all p<0.01). There was no significant difference between the tibial lateral cut between the varus and valgus group. We found a significant negative correlation between tibial lateral cut and FTMA in valgus group (r=-0.68). Discussion. In both varus and neutral group tibial lateral cut was more as compared to medial cut and this difference was significant while there was no significant difference between femoral medial and tibial cuts. This emphasises the point that in varus and neutral knees tibial side wear is responsible for causing the deformity as compared to femoral. There was no significant difference in tibial lateral cut between varus and valgus group. In valgus knees femoral side is responsible for producing malalignment rather than tibial side and less amount of lateral femur removal is required but amount of lateral tibial removal is not significantly different. This study shows that varus deformity is mainly a tibial phenomenon while valgus deformity mainly occurs in femur. Surprisingly, approximately a mean 9 mm of lateral tibial cut was required, irrespective of whether the patient had varus, neutral or valgus preop lower limb alignment


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 18 - 18
1 Oct 2012
Bou-Sleiman H Nolte L Reyes M
Full Access

Bone fixation plates are routinely used in corrective and reconstructive interventions. Design of such implants must take into consideration not only good surface fit, but also reduced intra-operative bending and twisting of the implant itself. This process increases mechanical stresses within the implant and affects its durability and the functional outcome of the surgery. Wound exposure and anaesthesia times are also reduced. Current population-based designs consider the average shape of a target bone as a template to pre-shape the implant. Other studies try to enhance the average design by optimising surface metrics in a statistical shape space. This could ensure a low mean distance between the implant and any bone in the population, but does not reduce neither the maximum possible distances nor directly the mechanical forces needed to fit the implant to the specific patient. We propose a population-based study that considers the bending and torsion forces as metrics to be minimised for the design of enhanced fixation plates. Our aim is to minimise the necessary intra-operative deformations of the plates. In our approach, we first propose to represent a fixation plate by dividing it into discrete sections lengthwise and fitting a plane to each section. The number of sections depends on the size of the implant and anatomical location. It should be small enough to capture the anatomical curvatures, but large enough not to be affected by local noise in the surface. Surface patches corresponding to common locations for plate fixations are extracted from 200 segmented computed tomography (CT) images. In this work, distal lateral femoral patches are considered. A statistical shape model of the patches is then computed and a large population of 2,197 instances is generated, evenly covering the natural statistical variation within the initial population. These instances are considered as both bone surfaces and potential new designs of the contact surface of the fixation plate. The key formulation of our solution is to examine the effect of deforming each section of the implant on the rest of the sections and compute the amount of bending and torsion needed to shape one patch to another. Each instance of the population is fitted to all others and the maximum bending and torsion angles are recorded. A similar process was applied for the mean of the population. The goal is to pick from the population the shape that simultaneously minimises the bending and torsion angles. The maximum required bending was reduced from 25.3® to 19.3® (24.72% reduction), whereas the torsion component was reduced from 12.4® to 6.2® (50% reduction). The method proposed in this abstract enhances the current state-of-the-art in orthopaedic implant design by considering the mechanical deformations applied to the implant during the surgery. The obtained results are promising and indicate a noticeable improvement over the standard pre-contouring to the population mean. We plan to further validate the method and as a future outlook, we intend to test the approach in real surgical scenarios


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 580 - 580
1 Dec 2013
Wee HB Flint W Armstrong A Lewis G
Full Access

Introduction:. The mechanical stresses and strains surrounding orthopaedic implants can influence bone resorption and formation, micro-fracture, and consequently implant fixation or loosening. Experimental measurement of these internal parameters is generally not feasible. Computational predictions by finite element modeling are promising, but until recently have been limited to assuming the surrounding cancellous bone as a continuous volume, without modeling individual trabeculae. A recent study demonstrated errors in bone-implant stiffness exceeding 100% when using this continuum assumption [1]. Conversely, recently micro-finite element computer models have been built from high resolution imaging of trabecular bone. In the present study we developed such models of central pegs cemented into cadaveric glenoids. We hypothesized that additional applied cement would lead to stronger implant fixation, but less physiologic strains in the trabeculae. Methods:. Two cadaveric specimens were implanted, with the applied cement volume in the Specimen 2 approximately double that of Specimen 1. The specimens were imaged by micro-computed tomography (vivaCT 40, Scanco, Switzerland) with a resolution of 12 microns. Images were filtered and resampled, then imported in Mimics (Materialise, Belgium) for semi-automated segmentation and 3D reconstruction based on our laboratory's published methods. Finite element models containing 1.7 to 1.8 million elements having sides of 0.1 mm were generated by a direct image voxel-to-element approach [2] (Fig. 1). The material properties of cement and bone were assumed linear elastic (bone: E = 3.5 GPa, cement: E = 3.0 GPa, and implant (UHMWPE): E = 1.3 GPa), and interfaces were assumed fully bonded. All outer walls of the bone were fixed, and a downward force of 250 N was applied to the implant peg. Simulations were run using Abaqus (Simulia, Pawtucket RI) on a 32-core, 1 TB-memory server at PSU's High Performance Computing Systems. Results:. Specimen 1 had 254 mm. 3. cement measured in the model, whereas Specimen 2 had 535 mm. 3. Strain energy density was less for Specimen 2 for bone underneath the implant, but similar between specimens for bone around the implant sides (Figs 2 and 3), providing initial indication of complex effects of cement volume on peri-implant strains. In Specimen 2 a slightly larger volume of cement (8.6 vs. 6.8 mm. 3. ) was exposed to von Mises stresses exceeding 10 MPa. Discussion:. This study is novel in its prediction of stresses and strains down to the level of individual glenoid trabeculae surrounding a cemented implant. In this pilot investigation we found that bone embedded in the cement mantle is subject to low strains, whereas the bone immediately surrounding the cement mantle is subject to abnormally high strains, with both cement technique and trabecular architecture likely influencing results. The study is limited by the lack of application of more complex loads and boundary conditions. Future work includes modeling of additional specimens and statistical analyses, and investigation of the roles of cement stiffness and peg design in dictating peri-implant bone strains


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1731 - 1735
1 Nov 2021
Iobst CA Frost MW Rölfing JD Rahbek O Bafor A Duncan M Kold S

Aims

Limb-lengthening nails have largely replaced external fixation in limb-lengthening and reconstructive surgery. However, the adverse events and high prevalence of radiological changes recently noted with the STRYDE lengthening nail have raised concerns about the use of internal lengthening nails. The aim of this study was to compare the prevalence of radiological bone abnormalities between STRYDE, PRECICE, and FITBONE nails prior to nail removal.

Methods

This was a retrospective case series from three centres. Patients were included if they had either of the three limb-lengthening nails (STYDE, PRECICE, or FITBONE) removed. Standard orthogonal radiographs immediately prior to nail removal were examined for bone abnormalities at the junction of the telescoping nail parts.


Bone & Joint Research
Vol. 4, Issue 7 | Pages 105 - 116
1 Jul 2015
Shea CA Rolfe RA Murphy P

Construction of a functional skeleton is accomplished through co-ordination of the developmental processes of chondrogenesis, osteogenesis, and synovial joint formation. Infants whose movement in utero is reduced or restricted and who subsequently suffer from joint dysplasia (including joint contractures) and thin hypo-mineralised bones, demonstrate that embryonic movement is crucial for appropriate skeletogenesis. This has been confirmed in mouse, chick, and zebrafish animal models, where reduced or eliminated movement consistently yields similar malformations and which provide the possibility of experimentation to uncover the precise disturbances and the mechanisms by which movement impacts molecular regulation. Molecular genetic studies have shown the important roles played by cell communication signalling pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone morphogenetic protein. These pathways regulate cell behaviours such as proliferation and differentiation to control maturation of the skeletal elements, and are affected when movement is altered. Cell contacts to the extra-cellular matrix as well as the cytoskeleton offer a means of mechanotransduction which could integrate mechanical cues with genetic regulation. Indeed, expression of cytoskeletal genes has been shown to be affected by immobilisation. In addition to furthering our understanding of a fundamental aspect of cell control and differentiation during development, research in this area is applicable to the engineering of stable skeletal tissues from stem cells, which relies on an understanding of developmental mechanisms including genetic and physical criteria. A deeper understanding of how movement affects skeletogenesis therefore has broader implications for regenerative therapeutics for injury or disease, as well as for optimisation of physical therapy regimes for individuals affected by skeletal abnormalities.

Cite this article: Bone Joint Res 2015;4:105–116