Rheumatoid arthritis (RA) is a common chronic immune disease. Berberine, as its main active ingredient, was also contained in a variety of medicinal plants such as Berberaceae, Buttercup, and Rutaceae, which are widely used in digestive system diseases in traditional Chinese medicine with anti-inflammatory and antibacterial effects. The aims of this article were to explore the therapeutic effect and mechanism of berberine on rheumatoid arthritis. Cell Counting Kit-8 was used to evaluate the effect of berberine on the proliferation of RA fibroblast-like synoviocyte (RA-FLS) cells. The effect of berberine on matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa-Β ligand (RANKL), tumour necrosis factor alpha (TNF-α), and other factors was determined by enzyme-linked immunoassay (ELISA) kit. Transcriptome technology was used to screen related pathways and the potential targets after berberine treatment, which were verified by reverse transcription-polymerase chain reaction (RT-qPCR) and Western blot (WB) technology.Aims
Methods
Aims. Femoroacetabular impingement (FAI) is a potential cause of hip osteoarthritis (OA). The purpose of this study was to investigate the expression profile of
Objectives. Re-rupture is common after primary flexor tendon repair. Characterization of the biological changes in the ruptured tendon stumps would be helpful, not only to understand the biological responses to the failed tendon repair, but also to investigate if the tendon stumps could be used as a recycling biomaterial for tendon regeneration in the secondary grafting surgery. Methods. A canine flexor tendon repair and failure model was used. Following six weeks of repair failure, the tendon stumps were analyzed and characterized as isolated tendon-derived stem cells (TDSCs). Results. Failed-repair stump tissue showed cellular accumulation of crumpled and disoriented collagen fibres. Compared with normal tendon, stump tissue had significantly higher gene expression of collagens I and III,
Previous studies showed that telo-peptides degraded from type II collagen, a type of collagen fragments, could induce cartilage damage in bovine stifle joints. We aim to investigate the role of integrins (ITGs) and
Introduction. Within articular cartilage, chondrocytes reside within the pericellular matrix (PCM), collectively constituting the microanatomical entity known as a chondron. The PCM functions as a pivotal protective shield and mediator of biomechanical and biochemical cues. In the context of Osteoarthritis (OA), enzymatic degradation of the PCM is facilitated by
Introduction. Chondrocytes are enveloped within the pericellular matrix (PCM), a structurally intricate network primarily demarcated by the presence of collagen type VI microfibrils and perlecan, resembling a protective cocoon. The PCM serves pivotal functions in facilitating cell mechanoprotection and mechanotransduction. The progression of osteoarthritis (OA) is associated with alterations in the spatial arrangement of chondrocytes, transitioning from single strings to double strings, small clusters, and eventually coalescing into large clusters in advanced OA stages. Changes in cellular patters coincide with structural degradation of the PCM and loss of biomechanical properties. Here, we systematically studied
Purpose: Articular cartilage is a physiologically hypoxic tissue with a gradient of oxygen tension ranging from about 10% oxygen at the cartilage surface to less than 1% in the deepest layers. The overall goal of the study was to determine whether an injectable allogeneic/autologous fibrin scaffolds in combination with mesenchymal stem cells (MSCs) is suitable for articular cartilage tissue engineering, and to determine the effect of hypoxic culture conditions on the stability of cell-fibrin scaffolds. The secondary goal was to enhance the accumulation of extracellular matrix (ECM) inside the fibrin scaffold under these conditions. Method: Chondroprogenitor clonal cell line RCJ3.1C5.18 (C5.18) and human mesenchymal stem cells (hMSCs) were encapsulated in fibrin hydrogel and fibrin glue scaffolds. The stabilization of fibrin scaffolds and development of ECM components were evaluated using zymography, SDS-polyacrylamide electrophoresis (SDS-PAGE), immunochemistry, spectrophotometry, RT-PCR including real time and histology (. Ahmed TA., et al. . Tissue Engineering. 2007. ;. 13. (7): . 1469. –77. ). Results: After encapsulation of C5.18 and hMSCs, fibrin gels quickly degraded under normoxic conditions (21 % oxygen) due to upregulation of plasminogen and
The in situ increased production of
Intervertebral disc degeneration (IDD) is a major cause of low back pain, which affects 80% of the adult population at least once in their life. The pathophysiological conditions underlying IDD are still poorly understood. Genetic makeup, aging, smoking, physical inactivity and mechanical overloading, especially due to obesity, are among the strongest risk factors involved. Moreover, IDD is often associated with chronic inflammation within disc tissues, which increases matrix breakdown, glycosaminoglycan (GAG) loss and cell death. This micro-inflammatory environment is typical of several metabolic disorders, including diabetes mellitus (DM). As the etiopathogenesis of IDD in diabetic subjects remains scarcely understood, we hypothesised that this may be driven by a DM-induced inflammation leading to a combination of reduced GAG levels, decreased proteoglycan synthesis and increased matrix breakdown within the disc. The objective of the study was to investigate the pathogenesis of IDD in a murine model of type 1 DM (T1DM), namely non-obese diabetic (NOD) mouse. Total disc glycosaminoglycan (GAG) content, proteoglycan synthesis, aggrecan fragmentation mediated by
After anterior cruciate ligament (ACL) rupture, reconstructive surgery with a hamstring tendon autograft is often performed. Despite overall good results, ACL re-rupture occurs in up to 10% of the patient population, increasing to 30% of the cases for patients aged under 20 years. This can be related to tissue remodelling in the first months to years after surgery, which compromises the graft's mechanical strength. Resident graft fibroblasts secrete
Human synovium harbours macrophages and T-cells that secrete inflammatory cytokines, stimulating chondrocytes to release proteinases like aggrecanases and
Osteoarthritis (OA) is a multifactorial debilitating disease that affects over four million Canadians. Although the mechanism(s) of OA onset is unclear, the biological outcome is cartilage degradation. Cartilage degradation is typified by the progressive loss of extracellular matrix components - aggrecan and type II collagen (Col II) – partly due to the up-regulation of catabolic enzymes - aggrecanases a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS-) 4 and 5 and
Osteoarthritis (OA) is a debilitating disease and the most common joint disorder worldwide. Although the development of OA is considered multifactorial, the mechanisms underlying its initiation and progression remain unclear. A prominent feature in OA is cartilage degradation typified by the progressive loss of extracellular matrix components - aggrecan and type II collagen (Col II). Cartilage homeostasis is maintained by the anabolic and catabolic activities of chondrocytes. Prolonged exposure to stressors such as mechanical loading and inflammatory cytokines can alter the phonotype of chondrocytes favoring cartilage catabolism, and occurs through decreased matrix protein synthesis and upregulation of catabolic enzymes such as aggrecanases (ADAMTS-) 4 and 5 and
Objectives. Osteoarthritis (OA) is the most common form of arthritis, affecting approximately 15% of the human population. Recently, increased concentration of nitric oxide in serum and synovial fluid in patients with OA has been observed. However, the exact role of nitric oxide in the initiation of OA has not been elucidated. The aim of the present study was to investigate the role of nitric oxide in innate immune regulation during OA initiation in rats. Methods. Rat OA was induced by performing meniscectomy surgery while cartilage samples were collected 0, 7, and 14 days after surgery. Cartilage cytokine levels were determined by using enzyme-linked immunosorbent assay, while other proteins were assessed by using Western blot. Results. In the time course of the study, nitric oxide was increased seven and 14 days after OA induction. Pro-inflammatory cytokines including tumour necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were decreased. L-NG-Nitroarginine methyl ester (L-NAME, a non-specific nitric oxide synthase inhibitor) significantly decreased cartilage nitric oxide and blocked immune suppression. Further, L-NAME decreased
The patellofemoral joint is an important source of symptoms in osteoarthritis of the knee. We have used a newly designed surgical model of patellar strengthening to induce osteoarthritis in BALB/c mice and to establish markers by investigating the relationship between osteoarthritis and synovial levels of
Cartilage calcification induces the synthesis of degrading enzymes, such as
A variety of scaffolds, including collagen-based membranes, fleeces and gels are seeded with osteoblasts and applied for the regeneration of bone defects. However, different materials yield different outcomes, despite the fact that they are generated from the same matrix protein, i.e. type I collagen. Recently we showed that in fibroblasts MMP-3 is induced upon attachment to matrix proteins in the presence of TGFbeta. Aim: To investigate the regulation of