Osteoporosis following ovariectomy has been suggested to modulate bone response to polyethylene wear debris. In this work, we evaluate the influence of estrogen deficiency on experimental particle-induced osteolysis. Polyethylene (PE) particles were implanted onto the calvaria of wild-type (WT), sham-ovariectomized (OVX), OVX mice and OVX mice supplemented with estrogen (OVX+E2) (12 mice per group). Sham-implanted mice served as internal controls. After 14 days, seven skulls per group were analyzed with a high-resolution micro-computed tomography (CT) and by histomorphometry, and for tartrate-specific alkaline phosphatase. Five calvariae per group were cultured for the assay of IL-1, IL-6, TNF- and RANKL secretion using quantitative ELISA. The expression of RANKL and OPG
Proliferation of synovial Mesenchymal Stromal/Stem Cells (MSCs) leads to synovial hyperplasia (SH) following Joint Surface Injury (JSI). Uncontrolled Yap activity causes tissue overgrowth due to modulation of MSC proliferation. We hypothesised that YAP plays a role in SH following JSI. A spatiotemporal analysis of Yap expression was performed using the JSI model in C57Bl/6 mice. Synovial samples from patients were similarly analysed. Gdf5-Cre;Yap1fl/fl;Tom mice were created to determine the effect YAP1 knockout in Gdf5 lineage cells on SH after JSI. In patients, Yap expression was upregulated in activated synovium, including a subset of CD55 positive fibroblast-like synoviocytes in the synovial lining (SL). Cells staining positive for the proliferation marker Ki67 expressed active YAP. In mice, Yap was highly expressed in injured knee joint synovium compared to controls. Yap
Introduction. The therapeutic potential of hematopoietic stem cells for fracture healing has been demonstrated with mechanistic insight of vasculogenesis and osteogenesis enhancement. Lnk has recently been proved an essential inhibitory signaling molecule in SCF-c-Kit signaling pathway for stem cell self-renewal demonstrating enhanced hematopoietic and osteogenic reconstitution in Lnk-deficient mice. We investigated the hypothesis that down regulation of Lnk enhances regenerative response via vasculogenesis and osteogenesis in fracture healing. Methods. A reproducible model of femoral fracture was created in mice. Immediately after fracture creation, mice received local administration of the following materials with AteloGene, 10μM (1)Lnk siRNA, (2)control siRNA. Results. Lnk group demonstrated more prompt fracture repair than control group. The functional bone healing was also significantly greater in Lnk group. Immunohistochemical staining and the
Improving periprosthetic bone is essential for implant fixation and reducing peri-implant fracture risk. This studied examined the individual and combined effects of iPTH and mechanical loading at the cellular, molecular, and tissue level for periprosthetic cancellous bone. Adult rabbits had a porous titanium implant inserted bilaterally on the cancellous bone beneath a mechanical loading device on the distal lateral femur. The right femur was loaded daily, the left femur received a sham loading device, and half of the rabbits received daily PTH. Periprosthetic bone was processed up to 28 days for qPCR, histology, and uCT analysis. We observed an increase in cellular and molecular markers of osteoblast activity and decrease in adipocytic markers for both treatments, with small additional effects in the combined group. Loading and iPTH led to a decrease and increase, respectively, in osteoclast number, acting through changes in RANKL/OPG expression. Changes in SOST and beta-catenin
Introduction. iPSCs represent a promising cell source for bone regeneration. To generate osteoprogenitor cells, most protocols use the generation of embryoid bodies (EBs). However, these protocols give rise to heterogeneous population of different cell lineage. Hypothesis. We hypothesized that a direct plating method without EB formation step could be an efficient protocol for generating a homogeneous population of osteoprogenitor cells from iPSCs. Materials & Methods. Murine iPSC colonies were dissociated with trypsin-EDTA, and obtained single cells were cultured on gelatin-coated plates in MSC medium and FGF-2. Adherent cells obtained by this direct-plating technique were termed as direct-plated cells (DPCs). DPCs were evaluated for cell-surface protein expression using flow cytometry. Expression levels of Oct-3/4
Injuries to growth plates may initiate the formation of reversible or irreversible bone-bridges, which may lead to partial or full closure of the growth plate resulting in bone length discrepancy, axis deviation or joint deformity. Blood vessels and vascular invasion are essential for the formation of new bone tissue. The aim of our study was to investigate the spatial and temporal expression VEGF and its receptors R1 and R2 as well as the ingrowth of vessels in the formation of bone bridges in a rat physeal injury model. Quantitative Real Time - Polymerase Chain Reaction (qRT-PCR) was performed for Vascular Endothelial Growth Factor (VEGF) and its R1 and R2 receptors. Samples from the proximal epiphysis, physis and metaphysis of the tibial bone were prepared for immunohistochemical analysis to demonstrate the spatial expression of VEGF and its R1 and R2 receptors as well as laminin. Kinetic expression of VEGF and VEGF-R1
The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student Objectives
Methods
MicroRNAs (miRNAs ) are small non-coding RNAs
that regulate gene expression. We hypothesised that the functions
of certain miRNAs and changes to their patterns of expression may
be crucial in the pathogenesis of nonunion. Healing fractures and
atrophic nonunions produced by periosteal cauterisation were created
in the femora of 94 rats, with 1:1 group allocation. At post-fracture
days three, seven, ten, 14, 21 and 28, miRNAs were extracted from
the newly generated tissue at the fracture site. Microarray and
real-time polymerase chain reaction (PCR) analyses of day 14 samples
revealed that five miRNAs, miR-31a-3p, miR-31a-5p, miR-146a-5p,
miR-146b-5p and miR-223-3p, were highly upregulated in nonunion.
Real-time PCR analysis further revealed that, in nonunion, the expression
levels of all five of these miRNAs peaked on day 14 and declined
thereafter. Our results suggest that miR-31a-3p, miR-31a-5p, miR-146a-5p,
miR-146b-5p and miR-223-3p may play an important role in the development
of nonunion. These findings add to the understanding of the molecular mechanism
for nonunion formation and may lead to the development of novel
therapeutic strategies for its treatment. Cite this article: