Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 5 | Pages 679 - 682
1 Jul 2003
Cheng Y Chien C Chen C

Free radicals, such as reactive oxygen species (ROS) which are released abruptly after deflation of an ischaemic tourniquet, cause reperfusion injuries. Ischaemic precondition (IPC), however, can reduce the injury. In clinical practice, the sequential application and release of tourniquets is often used in bilateral total knee replacement (TKR) to obtain a clearer operative field, but the effects on the production of free radicals and lipid peroxidation have not been studied. In this study, we have observed the production of free radicals and the subsequent lipid peroxidation in bilateral TKR with sequential application of a tourniquet to examine the effect of IPC. Patients undergoing elective TKR under intrathecal anaesthesia were studied. Blood samples were obtained after spinal anaesthesia, one minute before and five and 20 minutes after release of each tourniquet. We used the lucigenin chemiluminescence analysis and the phosphatidylcholine hydroperoxide (PCOOH) assay to measure the production of ROS and lipid peroxidation. Our results showed that production of ROS significantly increased at five and 20 minutes after release of the first tourniquet and at five minutes after release of the second tourniquet, but returned to normal at 20 minutes after the second reperfusion. The peak production of ROS was at 20 minutes after the first reperfusion; lipid peroxidation did not change significantly. We conclude that in spite of significant production of ROS after the release of tourniquet, the IPC phenomenon occurs during bilateral TKR with sequential application of a tourniquet


Bone & Joint Research
Vol. 11, Issue 4 | Pages 229 - 238
11 Apr 2022
Jaeger S Eissler M Schwarze M Schonhoff M Kretzer JP Bitsch RG

Aims

One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined.

Methods

A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD).


Bone & Joint Open
Vol. 5, Issue 1 | Pages 20 - 27
17 Jan 2024
Turgeon TR Vasarhelyi E Howard J Teeter M Righolt CH Gascoyne T Bohm E

Aims

A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis.

Methods

Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits.