Pelvic tilt (PT) is always described as the pelvic orientation along the transverse axis, yet four PT definitions were established based on different radiographic landmarks: anterior pelvic plane (PT. a. ), the centres of femoral heads and sacral plate (PT. m. ), pelvic outlet (PT. h. ), and sacral slope (SS). These landmarks quantify a similar concept, yet understanding of their relationships is lacking. Some studies referred to the words “pelvic tilt” for horizontal comparisons, but their PT definitions might differ. There is a demand for understanding their correlations and differences for education and research purposes. This study recruited 105 sagittal pelvic radiographs (68 males and 37 females) from a single clinic awaiting their hip surgeries. Hip hardware and spine pathologies were examined for sub-group analysis. Two observers annotated four PTs in a gender-dependent manner and repeated it after six months. The
Abstract. Extended Trochanteric Osteotomy (ETO) improves surgical exposure and aids femoral stem and bone cement removal in Revision Total Hip Replacement (RTHR) surgery. The aim of this study was to identify healing rates and complications of ETO in RTHR. Methods. From 2012 to 2019 we identified patients who underwent ETO for RTHR. Data collected demographics, BMI, diabetes, anticoagulants, indication for ETO, surgical approach, length of ETO and complications. Descriptive analysis of patient demographics, multiple
Intraoperative range of motion (ROM) radiographs are routinely taken during scaphoidectomy and four corner fusion surgery (S4CF) at our institution. It is not known if intraoperative ROM predicts postoperative ROM. We hypothesize that patients with a greater intra-operativeROM would have an improved postoperative ROM at one year, but that this arc would be less than that achieved intra- operatively. We retrospectively reviewed 56 patients that had undergone S4CF at our institution in the past 10 years. Patients less than 18, those who underwent the procedure for reasons other than arthritis, those less than one year from surgery, and those that had since undergone wrist arthrodesis were excluded. Intraoperative ROM was measured from fluoroscopic images taken in flexion and extension at the time of surgery. Patients that met criteria were then invited to take part in a virtual assessment and their ROM was measured using a goniometer. T-tests were used to measure differences between intraoperative and postoperative ROM, Pearson Correlation was used to measure associations, and
The emergence of patient specific instrumentation has seen an expansion from simple radiographs to plan total knee arthroplasty (TKA) with modern systems using computed tomography (CT) or magnetic resonance imaging scans. Concerns have emerged regarding accuracy of these non-weight bearing modalities to assess true mechanical axis. The aim of our study was to compare coronal alignment on full length standing AP imaging generated by the EOS acquisition system with the CT coronal scout image. Eligible patients underwent unilateral or bilateral primary TKA for osteoarthritis under the care of investigating surgeon between 2017 and 2022, with both EOS X-Ray Imaging Acquisition System and CT scans performed preoperatively. Coronal mechanical alignment was measured on the supine coronal scout CT scan and the standing HKA EOS. Pre-operative lower limb coronal alignment was assessed on 96 knees prior to TKA on the supine coronal scout CT scan and the standing HKA EOS. There were 56 males (56%), and 44 right knees (44%). The mean age was 68 years (range 53-90). The mean coronal alignment was 4.7 degrees (SD 5.3) on CT scan and 4.6 degrees (SD 6.2) on EOS (p=0.70). There was a strong positive correlation of coronal alignment on CT scan and EOS (pearson. 0.927, p=0.001). The mean difference between EOS and CT scan was 0.9 degrees (SD 2.4). Less than 3 degrees variation between measures was observed in 87% of knees. On
The optimal timing of when to perform manipulation under anesthesia (MUA) for stiffness following total knee arthroplasty (TKA) is unclear. This study aimed to identify the risk factors for MUA following primary TKA and whether performing an “early” MUA within 3 months results in a greater improvement in range of motion. Primary TKAs performed between January 2013 and December 2018 at three tertiary New Zealand hospitals were reviewed. International Classification of Diseases discharge coding was used to identify patients who underwent an MUA. Multivariate Cox regression was performed to identify patient and surgical risk factors for MUA. Pre- and post-MUA knee flexion angles were identified through manual review of operation notes. Multivariate
Preoperative ligament laxity can be characterized intraoperatively using digital robotic tensioners. Understanding how preoperative knee joint laxity affects preoperative and early post-operative patient reported outcomes (PROMs) may aid surgeons in tailoring intra-operative balance and laxity to optimize outcomes for specific patients. This study aims to determine if preoperative ligament laxity is associated with PROMs, and if laxity thresholds impact PROMs during early post-operative recovery. 106 patients were retrospectively reviewed. BMI was 31±7kg/m. 2. Mean age was 67±8 years. 69% were female. Medial and lateral knee joint laxity was measured intraoperatively using a digital robotic ligament tensioning device after a preliminary tibial resection.
Introduction. The functional ante-inclination (AI) of the cup after total hip arthroplasty (THA) is a key component in the combined sagittal index (CSI) to predict joint stability after THA. To accurately predict AI, we deducted a mathematic algorithm between the radiographic anteversion (RA), radiographic inclincation (RI), pelvic tilting (PT), and AI. The current study aims (1) to validate the mathematic algorithm; (2) to convert the AI limits in the CSI index (standing AI ≤ 45°, sitting AI ≥ 41°) into coronal functional safe zone (CFSZ) and explore the influences of the stand-to-sit pelvic motion (PM) and pelvic incidence (PI) on CFSZ; (3) to locate a universal cup orientation that always fulfill the AI criteria of CSI safe zone for all patients or subgroups of PM(PM ≤ 10°, 10° < PM ≤ 30°, and PM > 30°) and PI (PI≤ 41°, 41°< PI ≤ 62°, and PI >62°), respectively. Methods. A 3D printed phantom pelvic model was designed to simulate changing PT values. An acetabular cup was implanted with different RA, RI, and PT settings using robot assisted technique. We enrolled 100 consecutive patients who underwent robot assisted THA from April, 2019 to June, 2019 in our hospital. EOS images before THA and at 6-month follow-up were collected. AI angles were measured on the lateral view radiographs as the reference method. Mean absolute error (MAE), Bland-Altman analysis and
Thrombelastography (TEG) is a point-of-care tool that can measure clot formation and breakdown using a whole blood sample. We have previously used serial TEG analysis to define hypercoagulability and increased venous thromboembolism (VTE) risk following a major fracture requiring surgical treatment. Additionally, we have used serial TEG analysis to quantify the prolonged hypercoagulable state and increased VTE risk that ensues following a hip fracture. Recently developed cartridge-based platelet mapping (PLM) using TEG analysis can be used to activate platelets at either the adenosine diphosphate (ADP) receptor or at the Thromboxane A2 (AA) receptor, in order to evaluate clot strength when platelets are activated only through those specific receptors. This study aim was to evaluate platelet contribution to hypercoagulability, in order to identify potential therapeutic targets for VTE prevention. We hypothesized that there would be a platelet-predominant contribution to hypercoagulability following a hip fracture. Patients aged 50 years or older with a hip fracture treated surgically were enrolled in this prospective cohort study. Exclusion criteria were: prior history of VTE, active malignancy, or pre-injury therapeutic dose anticoagulation. Serial TEG and PLM analyses were performed at admission, post-operative day (POD) 1, 3, 5, 7 and at 2-, 4-, 6- and 12-weeks post-operatively. All patients received thromboprophylaxis with low molecular weight heparin (LMWH) for 28 days post-operatively. Hypercoagulability was defined as maximal amplitude (MA; a measure of clot strength) over 65mm based on TEG analysis. Independent samples t-tests were used to compare MA values with this previously established threshold and a mixed effects
Multiligament knee injuries (MLKI) are rare and life-altering injuries that remain difficult to treat clinically due to a paucity of evidence guiding surgical management and timing. The purpose of this study was to compare injury specific functional outcomes following early versus delayed surgical reconstruction in MLKI patients to help inform timing decisions in clinical practice. A retrospective analysis of prospectively collected data from patients with MLKIs at a single academic level 1-trauma center was conducted. Patients were eligible for inclusion if they had an MLKI, underwent reconstructive surgery either prior to 6wks from injury or between 12weeks and 2 years from injury, and had at least 12months of post-surgical follow-up. Patients with a vascular injury, open injuries or associated fractures were excluded. Study participants were stratified into early (<6wks from injury) and delayed surgical intervention (>12 weeks – 2 years from injury). The primary outcome was patient reported, injury specific, quality of life in the form of the Multiligament Quality of Life questionnaire (MLQOL) and its four domains (Physical Impairment, Emotional Impairment, Activity Limitations and Societal Involvement). We secondarily analyzed differences in the need for manipulation under anesthesia, and reoperation rates, as well as radiographic Kellgren Lawrence (KL) arthritis grades, knee laxity grading and range of motion at the most recent follow-up. A total of 131 patients met our inclusion criteria, all having had surgery between 2006 and 2019. There were 75 patients in the early group and 56 in the delayed group. The mean time to surgery was 17.6 ± 8.0 days in the early group versus 279 ± 146.5 days in the delayed. Mean postoperative follow-up was 58 months. There were no significant differences between early and delayed groups with respect to age (34 vs. 32.8 years), sex (77% vs 63% male), BMI (28.3 vs 29.7 kg/m. 2. ), or injury mechanism (p>0.05). The early surgery group was found to include more patients with lateral sided injuries (n=49 [65%] vs. n=23 [41%]; p=0.012), a higher severity of Schenck Classification (p=0.024) as well as nerve injuries at initial presentation (n=35 [49%] vs n=8 [18%]; p<0.001). Multivariable
Introduction. Innovations in orthopaedic technology and infrastructure growth often require significant funding. Although an increasing trend has been observed for third-party investments into medical startups and physician practices, no study has examined the role of this funding in orthopaedics, including the influence of venture capital (VC). Therefore, this study analyzed trends in VC investments related to the field of orthopaedic surgery, as well as the characteristics of companies receiving said investments. Methods. Venture capital investments into orthopaedic-related businesses were reviewed from 2000–2019 using Capital IQ, a proprietary market intelligence platform documenting financial transactions. The dataset was initially filtered to include healthcare-related venture capital transactions pertaining to the field of orthopaedic surgery. The final list of VC investments and their corresponding businesses were categorized by transaction year, amount (in USD), and orthopaedic subspecialty. The number and sum of VC investments was calculated both annually and cumulatively across the entire study period.
Introduction. Density-modulus relationships are often used to map the mechanical properties of bone based on CT- intensity in finite element models (FEMs). Although these relationships are thought to be site-specific, relationships developed for alternative anatomic locations are often used regardless of bone being modeled. Six relationships are commonly used in finite element studies of the shoulder; however, the accuracy of these relationships have yet to be compared. This study compares each of these six relationships ability to predict apparent strain energy density (SED. app. ) in trabecular bone cores from the glenoid. Methods. Quantitative-CT (QCT) (0.625 mm isotropic voxels), and µ-CT scans (0.032 mm isotropic voxels) were obtained for fourteen cadaveric scapulae (7 male, 7 female). Micro finite element models (µ-FEMs) were created from 98 virtual ‘cores’ using direct conversion to hexahedral elements. Two µ-FEM cases were considered: homogeneous tissue modulus of 20 GPa, and heterogeneous tissue modulus scaled by CT intensity of the µ-CT images (196 models). Each µ- FEM model was compressively loaded to 0.5% apparent strain and apparent strain energy density (SED. app. ) was calculated. Additionally, each of the six density-modulus relationships were used to map heterogeneous material properties to co- registered QCT-derived models (588 models in total). The loading and boundary conditions were replicated in the QCT-FEMs and the SED. app. was calculated and compared to the µ-FEM SED. app. To account for more samples than donors, restricted maximum likelihood estimation (REML)
Introduction. Machine learning is a relatively novel method to orthopaedics which can be used to evaluate complex associations and patterns in outcomes and healthcare data. The purpose of this study is to utilize 3 different supervised machine learning algorithms to evaluate outcomes from a multi-center international database of a single shoulder prosthesis to evaluate the accuracy of each model to predict post-operative outcomes of both aTSA and rTSA. Methods. Data from a multi-center international database consisting of 6485 patients who received primary total shoulder arthroplasty using a single shoulder prosthesis (Equinoxe, Exactech, Inc) were analyzed from 19,796 patient visits in this study. Specifically, demographic, comorbidity, implant type and implant size, surgical technique, pre-operative PROMs and ROM measures, post-operative PROMs and ROM measures, pre-operative and post-operative radiographic data, and also adverse event and complication data were obtained for 2367 primary aTSA patients from 8042 visits at an average follow-up of 22 months and 4118 primary rTSA from 11,754 visits at an average follow-up of 16 months were analyzed to create a predictive model using 3 different supervised machine learning techniques: 1)
Introduction. Sagittal pelvic tilt (SPT) can change with spinal pathologies and fusion. Change in the SPT can result in impingement and hip instability. Our aim was to determine the magnitude of the SPT change for hip instability to test the hypothesis that the magnitude of SPT change for hip instability is less than 10° and it is not similar for different hip motions. Methods. Hip implant motions were simulated in standing, sitting, sit-to-stand, bending forward, squatting and pivoting in Matlab software. When prosthetic head and liner are parallel, femoral head dome (FHD) faces the center of the liner. FHD moves toward the edge of the liner with hip motions. The maximum distance between the FHD and the center in each motion was calculated and analyzed. To make the results more reliable and to consider the possibility of bony impingement, when the FHD approached 90% of the distance between the liner-center and liner-edge, we considered the hip “in danger for dislocation”. The implant orientations and SPT were modified by 1-degree increments and we used
Purpose. Various alignment philosophies for total knee arthroplasty (TKA) have been described, all striving to achieve excellent long-term implant survival and good functional outcomes. In recent years, in search of higher functionality and patient satisfaction, a shift towards more patient-specific alignment is seen. Robotics is the perfect technology to tailor alignment. The purpose of this study was to describe ‘inverse kinematic alignment’ (iKA) technique, and to compare clinical outcomes of patients that underwent robotic-assisted TKA performed by iKA versus adjusted mechanical alignment (aMA). Methods. The authors analysed the records of a consecutive series of patients that received robotic assisted TKA with iKA (n=40) and with aMA (n=40). Oxford Knee Score (OKS) and satisfaction on a visual analogue scale (VAS) were collected at a follow-up of 12 months. Clinical outcomes were assessed according to patient acceptable symptom state (PASS) thresholds, and uni- and multivariable
Introduction. Robotic-arm assisted knee arthroplasty (rKA) has been associated with improved clinical, radiographic, and patient-reported outcomes. There is a paucity of literature, however, addressing its cost effectiveness. In the context of an integrated health system with an insurance plan and single source comprehensive data warehouse for electronic health records and claims data, we present an evaluation of healthcare costs and utilization associated with manual knee arthroplasty (mKA) versus rKA. We also examine the influence of rKA technology on surgeons’ practice patterns. Methods. Practice patterns of KA were assessed 18 months before and after introduction of robotic technology in April 2018. For patients also insured through the system's health plan, inpatient costs (actual costs recorded by health system), 90-day postoperative costs (allowed amounts paid by insurance plan), and 90-day postoperative utilization (length of stay, home health care visits, rehabilitation visits) were compared between mKA and rKA patients, stratified by total (TKA) or unicompartmental (UKA) surgery.
Rapid discharge pathways (RDP) have been implemented throughout most areas of orthopaedics. The primary goal of these pathways is to standardize the post-surgical hospital course for patients in order to decrease hospital length-of-stay (LOS). Surgical treatment of adolescent idiopathic scoliosis (AIS) remains one of the most invasive pediatric orthopaedic procedure and is routinely associated with a prolonged hospital stay. The implementation of RDPs following surgery for AIS has shown to be successful; however, all of these studies have been conducted within the United States and it has been shown previously that there exists major differences in hospital LOS and in post-operative complications between Canada and the United States. Therefore, the objective of this study was to determine if the implementation of a RDP at a single children's tertiary-referral centre in Canada could decrease hospital LOS without increasing post-operative complications. A retrospective chart review was completed for all patients who underwent posterior spinal instrumentation and fusion (PSIF) between March 1st, 2010 and February 28th, 2019, with date of implementation being March 1st, 2015. Patient pre-operative, operative, and post-operative information was collected from the charts along with the primary outcome variables: LOS, wound complication, 30-day return to the OR, 30-day emergency department admission, and 30-day hospital readmission. An interrupted time series analysis with a robust
Management of the pathologic long-head biceps tendon remains controversial. Biceps tenotomy is a simple intervention but may result in visible deformity and subjective cramping. Comparatively, biceps tenodesis is technically challenging, and has increased operative times, and a more prolonged recovery. The purpose of this study was to determine the incidence of popeye deformity following biceps tenotomy versus tenodesis, identify predictors for developing a deformity, and compare subjective and objective outcomes between those that have one and those that do not. Data for this study were collected as part of a randomized clinical trial comparing tenodesis versus tenotomy in the treatment of lesions of the long head of biceps tendon. Patients 18 years of age or older with an arthroscopy confirmed biceps lesion were randomized to one of these two techniques. The primary outcome measure for this sub-study was the rate of a popeye deformity at 24-months post-operative as determined by an evaluator blinded to group allocation. Secondary outcomes were patient reported presence/absence of a popeye deformity, satisfaction with the appearance of their arm, as well as pain and cramping on a VAS. Isometric elbow flexion and supination strength were also measured. Interrater reliability (Cohen's kappa) was calculated between patient and evaluator on the presence of a deformity, and logistic regression was used to identify predictors of its occurrence.
Introduction. Wear of the ultra-high molecular weight polyethylene (UHWMPE) component and the subsequent aseptic loosening remains a primary reason for late revision of total knee replacements (TKRs).[1] While improved measurement techniques have provided more quantitative information on the wear of surgically retrieved inserts, it is not well understood how observed damage patterns translate to volume loss of polyethylene in vivo. The overall purpose of this study is to investigate the relationship of damage patterns and volume loss at the articular surface of total knee replacements. We hypothesize that damage patterns are reliable predictors of volume loss. Methods. Two different investigators independently analyzed damage patterns and volume loss on 43 revision- and 21 postmortem-retrieved MG II (Zimmer Inc.) tibial UHMWPE components. Areas of damage patterns on the articular surfaces were outlined with a video microscope (SmartScope, OGP) and were separated into four spatially exclusive categories (Fig. 1): delamination, pitting, striations and polishing. Articular surfaces were digitized with a low-incidence laser coordinate measuring machine (SmartScope, OGP). Autonomous reconstruction, a previously described and validated method,[2] calculated volume loss on the medial and lateral sides of each component. To investigate the predictability of volume loss using observed patterns, stepwise
Numerous studies have demonstrated that concomitant lower back pain (LBP) results in worse functional outcomes in patients undergoing surgical treatment for the management of end stage hip and knee arthritis. However, no equivalent studies have analysed the impact of back pain on the outcomes of patients with end stage ankle arthritis. Furthermore, given that two widely accepted surgical options exist in the treatment of ankle arthritis, namely total ankle arthroplasty (TAA) and ankle arthrodesis (AA), it is possible that one surgical technique may be superior in patients with LBP. The aim of this study was to determine the incidence of LBP in people with ankle arthritis, analyse its effect on functional outcomes, and explore whether there was a treatment advantage from either TAA or AA. Prospectively collected data from the Canadian Orthopaedic Foot and Ankle Society (COFAS) database of ankle arthritis was analysed in this study. All patients with ankle arthritis who underwent surgery performed by three fellowship-trained foot and ankle surgeons at a single institution between January 2003 and July 2012 were studied. Patient demographics were collected pre-operatively, including the absence or presence of back pain, and post-operative follow up was performed at 2 and 5 years, evaluating patient-reported functional outcome measures including the Ankle Arthritis Score (AAS) and the 36-item short form survey (SF-36). Using a
Increased operative time has been previously identified as a risk factor for complications following total joint arthroplasty. The purpose of this study was to evaluate the influence of surgical time on 30-day complications following Total Knee Arthroplasty (TKA) and to determine if there were specific time intervals associated with worse outcomes. The American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database was utilized to identify patients ≥18 years who underwent TKA between 2005 and 2016 using procedural codes. Patients with surgical durations >240 minutes were excluded. Patient demographics, operation length, and 30-day major and minor complication rates were captured. Multivariable logistic regression was used to determine if the rate of complications differed depending on length of operation, while adjusting for age, sex, American Society of Anaesthesiologists (ASA) class, functional status, smoking status, comorbidities, anesthesia type, and Body Mass Index (BMI). Multivariable