Deltoid ligament insufficiency has been shown to decrease tibiotalar contact area and increase peak pressures within the lateral ankle mortise. Sectioning of the deltoid ligament has been shown to decrease tibiotalar contact area by 43%. This detrimental effect may create an arthritic ankle joint if left unresolved. Reconstructive efforts thus far have been less than satisfactory. Pankovich and Shivaram described the deltoid ligament as having superficial and deep components based on insertion sites. The superficial layer originates from the anterior colliculus of the medial malleolus and inserts on the navicular, calcaneus and talus. The deep layer originates from the intercollicular groove and posterior colliculus and inserts on the talus. Boss and Hintermann noted that the most consistent and strongest bands of the deltoid were the tibiocalcaneal and posterior deep tibiotalar ligaments. Chronic deltoid ligament insufficiency may be seen in several disorders including trauma and sports injuries, posterior tibial tendon disorders, prior triple arthrodesis with valgus malunion, or total ankle arthroplasty with improper component positioning or pre-existing
Most of the controversy surrounding management of the adult acquired flatfoot deformity revolves around the correction of Stage 2 deformity. Stage 1 deformity, uncommonly corrected surgically, involves tenosynovitis with preservation of tendon length and absence of structural deformity. Attempts at tenosynovectomy in light of structural deformity leads to operative failure, found in 10% of Teasdall and Johnson's 1992 patient population. Thus, with tenosynovectomy rarely becoming an operative situation, Stage 2 deformity becomes the mainstay of operative treatment of the adult flatfoot. Stage 2 deformity patients present with swelling medially, the inability to do a single heel raise, with a passively correctable subtalar joint. The tendon is functionally torn. In recent years, authors have subdivided Stage 2 deformity even further into A and B subcategories, where A involves less than 50% uncovering of the talonavicular joint, and B patients more than 50%. Recently, Anderson has added a C subtype, which may be applied to either A and B patients, in patients who have forefoot varus. Thus, Stage 2 patients suffer from pain that begins medially and progresses to the subfibular region over time. Most important, recognition of the continued sub classification in Stage 2 disease echoes the fact that this disorder is on a continuum, challenging the surgeon to recognize subtleties that, if unrecognized, lead to a poor patient outcome. The mainstay of treatment in Stage 2 disease is the medial slide calcaneal osteotomy, which realigns the hindfoot axis reducing valgus, improves the medial arch, protects the FDL tendon transfer, and allows the Achilles tendon to become a strong inverter. Over shift of the calcaneus can compromise the outcome, as will a lack of recognition of the congenital subtleties such that a valgus hindfoot can have a varus orientation to the calcaneus, both leading to lateral overload. A pure medial slide of a calcaneus that has a varus orientation does not correct deformity, rather, it creates it. Thus, an axial calcaneal view must be studied carefully, for a varus orientation may be corrected via a closing wedge osteotomy commensurate with the medial shift of the tuberosity. As noted above, the flexor digitorum longus tendon transfer is the staple procedure to replace the damaged posterior tibial tendon. This transfer balances the eversion power of the peroneal tendons, works in phase with the former posterior tibial tendon in the stance phase of gait, and replaces a painful diseased posterior tibial tendon. However, over tensioning the transfer results in a tenodesis rather than a functional tendon transfer, the relative weakness of the FDL tendon (30% as strong as the PTT) creates difficulty with heel raise, and inappropriate transfer to distal tarsal bones may compromise the result by limiting torque from the transferred tendon. Preservation of the posterior tibial tendon in combination with the transferred FDL tendon remains a consideration without answer, though Rosenfeld (2005) suggests a substantial improvement in strength through PTT preservation. Failure of the above protocol for treating Stage 2 disease most often revolves around the insufficient corrective power of the tandem procedures in longstanding ruptures. According to Guyton (2001), only 50% of patients report a perception in deformity improvement following FDL/calcaneal osteotomy procedures, and only 4% report a significant improvement in pre-existing deformity. Sangeorzan (2001) found such patients could not achieve a painless plantigrade foot due to acquired
There is little information about how to manage patients with a recurvatum deformity of the distal tibia and osteoarthritis (OA) of the ankle. The aim of this study was to evaluate the functional and radiological outcome of addressing this deformity using a flexion osteotomy and to assess the progression of OA after this procedure. A total of 39 patients (12 women, 27 men; mean age 47 years (28 to 72)) with a distal tibial recurvatum deformity were treated with a flexion osteotomy, between 2010 and 2015. Nine patients (23%) subsequently required conversion to either a total ankle arthroplasty (seven) or an arthrodesis (two) after a mean of 21 months (9 to 36). A total of 30 patients (77%), with a mean follow-up of 30 months (24 to 76), remained for further evaluation. Functional outcome, sagittal ankle joint OA using a modified Kellgren and Lawrence Score, tibial lateral surface (TLS) angle, and talar offset ratio (TOR) were evaluated on pre- and postoperative weight-bearing radiographs.Aims
Patients and Methods
Total ankle arthroplasty (TAA) surgery is complex and attracts a wide variety of complications. The literature lacks consistency in reporting adverse events and complications. The aim of this article is to provide a comprehensive analysis of each of these complications from a literature review, and to compare them with rates from our Unit, to aid clinicians with the process of informed consent. A total of 278 consecutive total ankle arthroplasties (251 patients), performed by four surgeons over a six-year period in Wrightington Hospital (Wigan, United Kingdom) were prospectively reviewed. There were 143 men and 108 women with a mean age of 64 years (41 to 86). The data were recorded on each follow-up visit. Any complications either during initial hospital stay or subsequently reported on follow-ups were recorded, investigated, monitored, and treated as warranted. Literature search included the studies reporting the outcomes and complications of TAA implants.Aims
Patients and Methods
It has been suggested that a supramalleolar osteotomy can return the load distribution in the ankle joint to normal. However, due to the lack of biomechanical data, this supposition remains empirical. The purpose of this biomechanical study was to determine the effect of simulated supramalleolar varus and valgus alignment on the tibiotalar joint pressure, in order to investigate its relationship to the development of osteoarthritis. We also wished to establish the rationale behind corrective osteotomy of the distal tibia. We studied 17 cadaveric lower legs and quantified the changes in pressure and force transfer across the tibiotalar joint for various degrees of varus and valgus deformity in the supramalleolar area. We assumed that a supramalleolar osteotomy which created a varus deformity of the ankle would result in medial overload of the tibiotalar joint. Similarly, we thought that creating a supramalleolar valgus deformity would cause a shift in contact towards the lateral side of the tibiotalar joint. The opposite was observed. The restricting role of the fibula was revealed by carrying out an osteotomy directly above the syndesmosis. In end-stage ankle osteoarthritis with either a valgus or varus deformity, the role of the fibula should be appreciated and its effect addressed where appropriate.