Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Bone & Joint Open
Vol. 3, Issue 4 | Pages 302 - 306
4 Apr 2022
Mayne AIW Cassidy RS Magill P Mockford BJ Acton DA McAlinden MG

Aims. Waiting times for arthroplasty surgery in Northern Ireland are among the longest in the NHS, which have been further lengthened by the onset of the COVID-19 global pandemic in March 2020. The Department of Health in Northern Ireland has announced a new Elective Care Framework (ECF), with the framework proposing that by March 2026 no patient will wait more than 52 weeks for inpatient/day case treatment. We aimed to assess the feasibility of achieving this with reference to total hip arthroplasty (THA) and total knee arthroplasty (TKA). Methods. Mathematical modelling was undertaken to calculate when the ECF targets will be achieved for THA and TKA, as well as the time when waiting lists for THA and TKA will be cleared. The number of patients currently on the waiting list and percentage operating capacity relative to pre-COVID-19 capacity was used to determine future projections. Results. As of May 2021, there were 3,757 patients awaiting primary THA and 4,469 patients awaiting primary TKA in Northern Ireland. Prior to April 2020, there were a mean 2,346 (2,085 to 2,610) patients per annum boarded for primary THA, a mean 2,514 (2,494 to 2,514) patients per annum boarded for primary TKA, and there were a mean 1,554 primary THAs and 1,518 primary TKAs performed per annum. The ECF targets for THA will only be achieved in 2030 if operating capacity is 200% of pre COVID-19 pandemic capacity and in 2042 if capacity is 170%. For TKA, the targets will be met in 2034 if capacity is 200% of pre-COVID-19 pandemic capacity. Conclusion. This modelling demonstrates that, in the absence of major funding and reorganization of elective orthopaedic care, the targets set out in the ECF will not be achieved with regard to THA and TKA. Waiting times for THA and TKA surgery in Northern Ireland are likely to remain greater than 52 weeks for most of this decade. Cite this article: Bone Jt Open 2022;3(4):302–306


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 10 | Pages 1360 - 1365
1 Oct 2009
Sewell MD Spiegelberg BGI Hanna SA Aston WJS Meswania JM Blunn GW Henry C Cannon SR Briggs TWR

We describe the application of a non-invasive extendible endoprosthetic replacement in skeletally-mature patients undergoing revision for failed joint replacement with resultant limb-length inequality after malignant or non-malignant disease. This prosthesis was developed for tumour surgery in skeletally-immature patients but has now been adapted for use in revision procedures to reconstruct the joint or facilitate an arthrodesis, replace bony defects and allow limb length to be restored gradually in the post-operative period. We record the short-term results in nine patients who have had this procedure after multiple previous reconstructive operations. In six, the initial reconstruction had been performed with either allograft or endoprosthetic replacement for neoplastic disease and in three for non-neoplastic disease. The essential components of the prosthesis are a magnetic disc, a gearbox and a drive screw which allows painless lengthening of the prosthesis using the principle of electromagnetic induction. The mean age of the patients was 37 years (18 to 68) with a mean follow-up of 34 months (12 to 62). They had previously undergone a mean of six (2 to 14) open procedures on the affected limb before revision with the non-invasive extendible endoprosthesis. The mean length gained was 56 mm (19 to 107) requiring a mean of nine (3 to 20) lengthening episodes performed in the outpatient department. There was one case of recurrent infection after revision of a previously infected implant and one fracture of the prosthesis after a fall. No amputations were performed. Planned exchange of the prosthesis was required in three patients after attainment of the maximum lengthening capacity of the implant. There was no failure of the lengthening mechanism. The Mean Musculoskeletal Tumour Society rating score was 22 of 30 available points (18 to 28). The use of a non-invasive extendible endoprosthesis in this manner provided patients with good functional results and restoration of leg-length equality, without the need for multiple open lengthening procedures


The Bone & Joint Journal
Vol. 98-B, Issue 3 | Pages 349 - 358
1 Mar 2016
Akiyama K Nakata K Kitada M Yamamura M Ohori T Owaki H Fuji T

Aims. We investigated changes in the axial alignment of the ipsilateral hip and knee after total hip arthroplasty (THA). . Patients and Methods. We reviewed 152 patients undergoing primary THA (163 hips; 22 hips in men, 141 hips in women) without a pre-operative flexion contracture. The mean age was 64 years (30 to 88). The diagnosis was osteoarthritis (OA) in 151 hips (primary in 18 hips, and secondary to dysplasia in 133) and non-OA in 12 hips. A posterolateral approach with repair of the external rotators was used in 134 hips and an anterior approach in 29 hips. We measured changes in leg length and offset on radiographs, and femoral anteversion, internal rotation of the hip and lateral patellar tilt on CT scans, pre- and post-operatively. . Results. The mean internal rotation increased by 11° (-15° to 46°) and was associated with underlying disease (OA), pre-operative range of internal rotation, gender, surgical approach, leg lengthening, and change of femoral anteversion (adjusted R. 2. : 0.253, p < 0.001). The mean lateral patellar tilt increased by 4° (-5° to 14°) and was associated with age, leg lengthening, and increment of hip internal rotation (adjusted R. 2. : 0.193, p < 0.001). Conclusion. Both internal rotation of the hip at rest and lateral patellar tilt are increased after THA. Changes in rotation after THA may affect gait, daily activities, the rate of dislocation of the hip, and ipsilateral knee pain. Take home message: Internal rotation of the hip at rest and lateral patellar tilt increase after THA. Cite this article: Bone Joint J 2016;98-B:349–58


The Bone & Joint Journal
Vol. 99-B, Issue 1_Supple_A | Pages 60 - 64
1 Jan 2017
Lange J Haas SB

Valgus knee deformity can present a number of unique surgical challenges for the total knee arthroplasty (TKA) surgeon. Understanding the typical patterns of bone and soft-tissue pathology in the valgus arthritic knee is critical for appropriate surgical planning. This review aims to provide the knee arthroplasty surgeon with an understanding of surgical management strategies for the treatment of valgus knee arthritis.

Lateral femoral and tibial deficiencies, contracted lateral soft tissues, attenuated medial soft tissues, and multiplanar deformities may all be present in the valgus arthritic knee. A number of classifications have been reported in order to guide surgical management, and a variety of surgical strategies have been described with satisfactory clinical results. Depending on the severity of the deformity, a variety of TKA implant designs may be appropriate for use.

Regardless of an operating surgeon’s preferred surgical strategy, adherence to a step-wise approach to deformity correction is advised.

Cite this article: Bone Joint J 2017;99-B(1 Supple A):60–4.