Introduction. Acetabular revision surgery is challenging due to severe bone defects. Burch-Schneider anti-protrusion cages (BS cage: Zimmer-Biomet) is one of the options for acetabular revision, however higher dislocation rate was reported. A computed tomography (CT)-based navigation system indicates us the planned direction for implantation of a cemented acetabular cup during surgery. A
Introduction:.
Introduction:. High failure rates with large diameter, metal on metal hip replacements have highlighted a potential issue with the head/stem taper junction as one of the significant sources of metal ion release. Postulated reasons as to why this may be such a problem with large head metal on metal hip replacements is due to the increased torque achieved by the larger head size. This may be responsible for applying greater micromotion between the head and stem taper and consequently greater amounts of fretting corrosion. The aim of this study was to perform short term in vitro electrochemical tests to assess the effect of increasing head diameter and torque on the fretting corrosion susceptibility of the head/stem taper interface and to investigate its effect on different material combinations. Methods:. 36 mm Cobalt Chrome (CoCr) femoral heads were coupled with either a CoCr or Titanium (Ti) stem with 12/14 tapers, all with a smooth surface finish. Increasing perpendicular horizontal offsets in the sagittal plane created incremental increases in torque. Offset increments of 0 mm, 5.4 mm and 7.5 mm were selected (Figure 1) to simulate the torque force equivalent to 9 Nm, 12 Nm and 17 Nm. An inverted hip replacement setup was used (ASTM F1875-98) (Figure 2). Components were statically loaded at 0 kN and 2.3 kN prior to sinusoidal cyclic loading and electrochemical testing. Mean & fretting currents were calculated every 50 cycles up to a maximum of 1000 cycles of sinusoidal cyclic loading at 3 Hz along with the Overall Mean Current (OMC), Overall Mean Fretting Current (OMFC) and Overall Current change (OCC). Results:. There was a significant increase in the mean current (R = 0.992, p = 0.008) and fretting current (R = 0.929, p = 0.071) for CoCr-CoCr and in the mean current (R = 0.780, p = 0.005) and fretting current (R = 0.810, p = 0.006) for CoCr-Ti material combinations, with increasing femoral offsets. The highest currents (mean and fretting) were produced at 7.5 mm and the lowest at 0 mm offsets. The proportional relationship between torque and corrosion was observed for both CoCr-CoCr and CoCr-Ti material combinations. With low torques we saw higher OMC and OMFC with the Co-Ti material combination however with higher torques we saw higher OMC and OMFC with the CoCr-CoCr combination (Figure 3). Conclusion:. Increasing torque leads to increased susceptibility to fretting corrosion at the modular head/stem taper interface of total hip replacements for both head stem material combinations. This study highlights the risk of high frictional torque, independent of material combination, on the head/ stem with the use of large heads. This is particularly relevant with the increasing use of
The Accolade®TMZF is a taper-wedge cementless metaphyseal coated femoral stem widely utilized from 2002-2012. In recent years, there have been reports of early catastrophic failure of this implant. Establishing a deeper understanding of the rate and causes of revision in patients who developed aseptic failure in stems with documented concerns about high failure rates is critical. Understanding any potential patient or implant factors which are risk factors for failure is important to inform both clinicians and patients. We propose a study to establish the long-term survival of this stem and analyze patients who underwent aseptic revision to understand the causes and risk factors for failure. A retrospective review was undertaken of all patients who received a primary total hip arthroplasty with an Accolade® TMZF stem at a high-volume arthroplasty center. The causes and timing of revision surgery were documented and cross referenced with the Canadian Institute of Health Information Discharge Abstract Database to minimize loss to follow-up. Survivorship analysis was performed with use of the Kaplan-Meier curves to determine the overall and aseptic survival rates at final follow-up. Patient and implant factors commonly associated with aseptic failure were extracted and Cox proportional hazards model was used. A consecutive series of 2609 unilateral primary THA patients implanted with an Accolade®TMZF femoral hip stem were included. Mean time from primary surgery was 12.4 years (range 22 days to 19.5 years). Cumulative survival was 96.1% ± 0.2 at final follow-up. One hundred and seven patients underwent revision surgery with aseptic loosening of the femoral component was the most common cause of aseptic failure in this cohort (33/2609, 1.3%). Younger age and
This study aimed to examine the changing trends in the reasons for total hip replacement (THR) revision surgery, in one country over a twenty-one year period, in order to assess whether changes in arthroplasty practices have impacted revision patterns and whether an awareness of these changes can be used to guide clinical practice and reduce future revision rates. The reason for revision THR performed between January 1999 and December 2019 was extracted from the New Zealand Joint Registry (NZJR). The results were then grouped into seven 3-year periods to allow for clearer visualization of trends. The reasons were compared across the seven time periods and trends in prosthesis use, patient age, gender, BMI and ASA grade were also reviewed. We compared the reasons for early revision, within one year, with the overall revision rates. There were 20,740 revision THR registered of which 7665 were revisions of hips with the index procedure registered during the 21 year period. There has been a statistically significant increase in both femoral fracture (4.1 – 14.9%, p<0.001) and pain (8.1 – 14.9%, p<0.001) as a reason for hip revision. While dislocation has significantly decreased from 57.6% to 17.1% (p<0.001). Deep infection decreased over the first 15 years but has subsequently seen further increases over the last 6 years. Conversely both femoral and acetabular loosening increased over the first 12 years but have subsequently decreased over the last 9 years. The rate of early revisions rose from 0.86% to 1.30% of all revision procedures, with a significant rise in revision for deep infection (13-33% of all causes, p<0.001) and femoral fracture (4-18%, p<0.001), whereas revision for dislocation decreased (59-30%, p<0.001). Adjusting for age and gender femoral fracture and deep infection rates remained significant for both (p<0.05). Adjusting for age, gender and ASA was only significant for infection. The most troubling finding was the increased rate of deep infection in revision THR, with no obvious linked pattern, whereas, the reduction in revision for dislocation, aseptic femoral and acetabular loosening can be linked to the changing patterns of the use of
With the introduction of highly crosslinked polyethylene (HXLPE) in total hip arthroplasty (THA), orthopaedic surgeons have moved towards using
Increased femoral head size reduces the rate of dislocation after total hip arthroplasty (THA). With the introduction of highly crosslinked polyethylene (HXLPE) liners in THA there has been a trend towards using
Key Points:. Historically, 22.25, 26, 28, or 32 mm metal femoral heads were used in primary total hip arthroplasty, but innovations in materials now permit head sizes 36 mm or larger. Stability and wear of primary total hip arthroplasty are related to the diameter and material of the femoral head. Larger diameter femoral heads are associated with increased joint stability through increases in arc range of motion and excursion distance prior to dislocation. Fixation of the acetabular component may be related to the size of the femoral head, with increased frictional torque associated with large diameter heads and certain polyethylene. Linear wear of highly crosslinked polyethylenes seems unrelated to femoral head diameter, but larger heads have been reported to have higher volumetric wear. Mechanically assisted crevice corrosion at the connection between the modular femoral head and neck may be associated with the femoral head size and material. Cobalt chromium alloy, alumina ceramic composite, or oxidised zirconium femoral heads on highly crosslinked polyethylene are the most commonly used bearing surfaces, but each may have unique risks and benefits. Conclusions. At present, there is a wave of enthusiasm for the routine use of “large” (32, 36 mm, or larger) femoral heads with highly crosslinked polyethylene for the vast majority of patients having a primary THA. It may be reasonable to consider the “graduated femoral head-outer acetabular diameter system”, using 28 mm femoral heads with “smaller” acetabular components (<50 mm), 32 mm femoral heads with acetabular components 50 – 56 mm outer diameter, and 36 mm or
Dislocation remains among the most common complications of, and reasons for, revision of both primary and revision total hip arthroplasties in the United States. Hence, there is great interest in maximising stability to prevent this complication. Highly cross-linked polyethylene has allowed us to increase femoral head size, without a clinically important increase in wear. Head size has long been recognised to have a strong influence on the risk of dislocation postoperatively. As femoral head size increases, stability is augmented, secondary to a decrease in component-to-component impingement, which is theoretically eliminated at head sizes greater than 36mm in diameter (however osseous impingement can still occur). Larger head sizes also greatly increase the “jump distance” required for the head to dislocate (in an appropriately positioned cup) and eliminate the need for skirts. Level one studies support the use of larger diameter heads as decreasing the risk of dislocation following primary and revision THA. Larger diameter heads do, however, have negatives with the most recent concern being larger forces imparted upon the trunnion, which may contribute to adverse local tissue reactions (ALTR) which have recently been reported in patients with a metal on polyethylene bearing. However, in the series by Cooper et al, 32mm was the most common head size identified with no head sizes >36mm in this series. This suggests that the cause of ALTR is probably multifactorial and while femoral head size may be a contributor, the trunnion itself may be more important including its diameter, length and modulus of elasticity as well as the specific finish of the taper. Finally, when
Purpose. Dislocation after revision total hip is a common complication. The purpose of this study was to assess whether a
INTRODUCTION:. Recent trends in total hip arthroplasty (THA) have resulted in the use of larger acetabular components to achieve
Metal on metal total hip arthroplasty provides the potential improvement in articular wear and the use of large-diameter femoral heads following the prospect for reduction in the risk of dislocation. The purpose of this study was to compare the clinical and radiographic outcomes as well as serum metal ion level between the two different component designs with small and
There has been a renewed interest in surface replacement arthroplasty over the last decade, with the hope and expectation that this procedure would provide an advantage over conventional total hip arthroplasty, especially in the young, active patient. More specifically, the promises of surface replacement arthroplasty have been: 1) preservation of bone stock so that future revisions would be easier, 2) potential to be minimally invasive in their approach, 3) better functional outcomes because of the stability associated with a
The need for a more durable, metal free, non-osteolytic particle generating material in Total Hip Replacement (THR) is urgently required to reduce revision surgeries. Current used materials; ceramic, metal and UHMWPE remain discrepant for long-term use. Polyimide (MP-1™) is a high performance biopolymer, originating from aerospace industry. MP-1™ is heat resistant, highly cross-linked and exhibits a self-lubrication property required for bearings and articulating joints. Being resistant to fatigue, creep and chemicals and serializable by autoclave or irradiation, MP-1™ is ideal for medical devices. Finalizing pre-clinical testing, two patients were implanted 13 years ago after informed consent. A PM (Post Mortem) retrieval at 6.5 years, showed no measureable wear, a bland synovium, and no osteoclastic or bone marrow reaction. The 13Y patients' hip, a revision from Polyethylene wear to MP-1™, has an unchanged radiograph and is fully active (Fig. 1). The Ethical Committee approved 100 patients with a single surgeon (PJB) post-marketing trial running Delta ceramic femoral ball against MP-1™ liner. Age range is from 81 to 33 years. The younger patients now being offered MP-1™, in view of the retrieval data. The MP-1™ acetabular liner is 4mm thick, as currently used in a LIMA PF shell, which replaces polyethylene, ceramic or dual mobility options. Out of the 78 enrolled patients, 52 patients have the implant for more than 5 years. The only “Complications” in a few patients was an initial squeak which spontaneously disappears by 10 days and never returns. This is likely due to reduced clearance between head and liner and likely easily correctable. There have been no dislocations or restrictions on activity level. Oxford and Harris Hip scores along with radiology, blood and clinical examination are collected during follow-up. MP-1™ liner on Delta ceramic head in THA, or in the future with MP-1 head, looks very promising with advantages of ease of sterilization, insignificant wear, no tissue reactivity and ability to have thin section and
INTRODUCTION. Femoral head diameter has a major influence on stability and dislocation resistance after Total Hip Arthroplasty (THA). Although routine use of large heads is common, several recent studies have shown that contemporary large head prostheses can directly impinge against native soft tissues, particularly the iliopsoas which wraps around the femoral head, leading to refractory anterior hip pain. To address this, we developed a novel Anatomically Contoured
Purpose. Use of a
Introduction.
The selection of an acetabular component for primary hip arthroplasty has narrowed significantly over the past 10 years. Although monoblock components demonstrated excellent long-term success the difficulty with insertion and failure to fully appreciate full coaptation of contact with the acetabular floor has led to almost complete elimination of its utilization. Modular acetabular components usually with titanium shells and highly crosslinked polyethylene are by far the most utilised today. This is particularly true with mid-term results demonstrating excellent wear rates and extremely low failure rates and the concern of possible mechanical failure of highly crosslinked polyethylene not being a clinical problem. Ceramic liners are also used but problems with squeaking articulations and liner chipping have made highly crosslinked polyethylene the preferred liner material. Metal-on-metal except in surface replacement arthroplasty is rarely used in primary hip arthroplasty. With instability in total hip replacement still being a significant and the leading cause of revision hip replacement the dual mobility articulation has emerged as an increasingly used acetabular component. This is composed of either a monoblock cobalt chrome socket articulating with a large polyethylene liner into which the femoral head is constrained. The polyethylene liner becomes essentially a
Background. Large head metal on metal total hip arthroplasty MOM THA have been consistently shown substantial improvement in wear performance compared with metal on polyethylene articulations.
Dislocation remains among the most common complications of, and reasons for, revision of both primary and revision total hip arthroplasties in the United States. We have advocated identifying the primary cause of instability to plan appropriate treatment (Wera, Della Valle, et al., JOA 2012). Once implant position, leg length, and offset have been optimised and sources of impingement have been removed, the surgeon can opt for a