Enhanced recovery pathways (ERPs) utilise multimodal rehabilitation techniques to reduce post-operative pain and accelerate the rehabilitation process following surgery. Originally described following elective colonic surgery enhanced recovery pathways have gained increasing use following elective hip and knee joint replacement in recent years. Early studies have indicated that enhanced recovery pathways can reduce length of hospital stay, reduce complications and improve cost-effectiveness of joint replacement surgery. Despite this growing evidence base uptake has been slow in certain centres and many surgeons are yet to utilise enhanced recovery pathways in their practice. We look at the process and effects of implementing an enhanced recovery pathway following total hip replacement surgery at a district general hospital in the United Kingdom. A retrospective study was initially undertaken over a four-month period to assess patient demographics, length of stay, time to physiotherapy and complication rates including re-admission within 28 days. Based on national recommendations an enhanced recovery pathway protocol was then implemented for an elective total hip replacement list. Inclusion criteria were elective patients undergoing primary total hip replacement (THR) surgery. The pathway included pre-operative nutrition optimisation, 4mg ondansetron, 8mg dexamethasone and 1g tranexamic acid at induction and 150mL ropivacaine HCL 0.2%, 30mg
Peri-articular injections (PAI) have become an important component in many multimodal pain protocols after total knee arthroplasty (TKA). Liposomal bupivacaine has emerged as a highly marketed and touted ingredient for PAI. However, the true efficacy of this material, particularly compared with less expensive PAI “cocktails” such as traditional bupivacaine or ropivacaine, has not been proven to date. Ropivacaine is considered a long-active local analgesic and in combination with epinephrine,
Introduction. Pain control following total knee arthroplasty (TKA) heavily influences timing of mobilization and rehabilitation postoperatively as well as length of hospital stay. Recently, periarticular injection of liposomal bupivacaine (EXPAREL®; Pacira Pharmaceuticals, Inc., San Diego, California) has demonstrated pain relief comparable to femoral nerve block for postoperative analgesia in TKA with earlier mobilization and shortened hospital stay. In order to better explore the use of EXPAREL® in TKA, we standardized the postoperative analgesia to intraoperative periarticular injection of multimodal pain management, which is a recommended postoperative method of pain control in TKA. We studied the effectiveness of periarticular EXPAREL® in TKA postoperative pain control, including impact on early mobilization and length of hospital stay, compared to another local analgesic (Ropivacaine) when both are used as part of a multimodal pain management approach. Methods. We performed a double blind, randomized, controlled, prospective, IRB-approved study that enrolled 96 participants who underwent a unilateral TKA by one surgeon between May 2014 and March 2015. The two randomized groups were as follows: group 1 (control group) was given the standard intra-articular “pain cocktail” injection, consisting of ropivacaine,
Dexmedetomidine, an alpha 2 agonist, has been approved for providing sedation in the intensive care unit. Along with sedative properties, it has analgesic activity through its highly selective action on alpha 2 receptors. Recent studies have examined the use of dexmedetomidine as an adjuvant to prolong the duration of peripheral nerve blocks. Studies showing effectiveness of dexmedetomidine for adductor canal block in knee surgery are small. Also, its effectiveness has not been compared to Epinephrine which is a strong alpha and beta receptor agonist. In a previous study, we showed that motor sparing knee blocks significantly increased the duration of analgesia compared with periarticular knee infiltration using local anesthetic mixture containing Epinephrine following total knee arthroplasty (TKA). In this study, we compared two local anesthetic mixtures: one containing Dexmedetomidine and the other Epinephrine for prolongation of motor sparing knee block in primary TKA patients. After local ethics board approval and gaining Notice of Compliance (NOC) from Health Canada for use of Dexmedetomidine perineurally, 70 patients between the ages 18 – 95 of ASA class I to III undergoing unilateral primary total knee arthroplasty were enrolled. Motor sparing knee block − 1) Adductor canal continuous catheter 2) Single shot Lateral Femoral Cutaneous Nerve block 3) Single shot posterior knee infiltration was performed in all patients using 60 ml mixture of 0.5% Ropivacaine, 10 mg Morphine, 30 mg
Pain management following surgery continues to challenge patients, physician-extenders, and surgeons. A recent survey of 300 patients following surgery found that 86% experienced pain following surgery with 75% describing moderate or severe pain. Pain management in 2017 has to better address patient's needs as Pain has become the “5th Vital Sign” and is used in many patient reported outcomes (for better or worse). Multimodal therapy has been defined as “Synchronous administration of ≥ 2 pharmacological agents or approaches, each with a distinct mechanism of action”. Mounting evidence supports the use of a multimodal approach to peri-operative pain management in all surgical subspecialties. A recent systematic review of intravenous ketamine showed a reduction total opioid consumption and an increase in the time to first analgesic dose needed across all studies. Gabapentin and pregabalin have both been shown to dramatically reduce the use of opioid consumption by 30%. We have worked with our anesthesia team and developed a multimodal analgesia program that includes
Refinement of surgical techniques, anesthesia protocols, and patient selection has facilitated this transformation to same day discharge for arthroplasty care, most notably Partial Knee Arthroplasty (PKA). The trend for early discharge has already happened for procedures formerly regarded as “inpatient” procedures such as upper extremity surgery, arthroscopy, ACL reconstruction, foot and ankle procedures, and rotator cuff repair. Our program began focused on PKA and has now expanded to primary TKA and THA, and select revision cases. Over the past few years we have performed 1,230 knee arthroplasty procedures with no readmissions for pain control. Average age and age range is identical to our inpatient cohort for our partial knee cases. Patient selection is based on medical screening criteria and insurance access. PKA is the ideal procedure to begin your transition to the outpatient space. We currently perform medial PKA, lateral PKA, and patellofemoral arthroplasty as an outpatient. The program centers on the patient, their family, home recovery, preoperative education, efficient surgery, and represents a shift in the paradigm of arthroplasty care. It can be highly beneficial to patients, surgeons, anesthesia, facility costs, and payors as arthroplasty procedures shift to the outpatient space. Perhaps the most significant developments in joint replacement surgery in the past decade have been in the area of multimodal pain management. This has reduced length of stay in the inpatient hospital environment opening the opportunity for cost savings and even outpatient joint replacement surgery for appropriately selected patients. The hallmark of this program is meticulous protocol execution. Preemptive pain control with oral anti-inflammatory agents, gabapentin, regional anesthetic blocks that preserve quad function for TKA (adductor canal block) and pericapsular long acting local anesthetics with the addition of injectable
Refinement of surgical techniques, anaesthesia protocols, and patient selection have facilitated this transformation to same day discharge for arthroplasty care, most notably Partial Knee Arthroplasty (PKR). The trend for early discharge has already happened for procedures formerly regarded as “inpatient” procedures such as upper extremity surgery, arthroscopy, ACL reconstruction, foot and ankle procedures, and rotator cuff repair. Our program began focused on Partial Knee Arthroplasty (PKA) and has now expanded to primary TKA and THA, and select revision cases. Over the past few years we have performed 1,230 Knee Arthroplasty procedures with no readmissions for pain control. Average age and age range is identical to our inpatient cohort for our partial knee cases. Patient selection is based on medical screening criteria and insurance access. PKA is the ideal procedure to begin your transition to the outpatient space. We currently perform medial PKA, lateral PKA, and patellofemoral arthroplasty as outpatient cases. The program centers on the patient, their family, home recovery, pre-operative education, efficient surgery, and represents a shift in the paradigm of arthroplasty care. It can be highly beneficial to patients, surgeons, anaesthesia, facility costs, and payors as arthroplasty procedures shift to the outpatient space. Perhaps the most significant developments in joint replacement surgery in the past decade have been in the area of multimodal pain management. This has reduced length of stay in the inpatient hospital environment opening the opportunity for cost savings and even outpatient joint replacement surgery for appropriately selected patients. The hallmark of this program is meticulous protocol execution. Pre-emptive pain control with oral anti-inflammatory agents, gabapentin, regional anesthetic blocks that preserve quad function for TKA (adductor canal block) and pericapsular long acting local anesthetics with the addition of injectable
Perhaps the most significant developments in joint replacement surgery in the past decade have been in the area of multimodal pain management. This has reduced length of stay and opened the opportunity for cost savings and even outpatient joint replacement surgery for appropriately selected patients. The hallmark of this program is preemptive pain control with oral anti-inflammatory agents, gabapentin, regional anesthetic blocks that preserve quad function for TKA (adductor canal block) and long acting local anesthetics with the addition of injectable
Perhaps the most significant developments in joint replacement surgery in the past decade have been in the area of multimodal pain management. This has reduced length of stay in the inpatient hospital environment opening the opportunity for cost savings and even outpatient joint replacement surgery for appropriately selected patients. The hallmark of this program is pre-emptive pain control with oral anti-inflammatory agents, gabapentin, regional anesthetic blocks that preserve quad function for TKA (adductor canal block) and pericapsular long acting time release local anesthetics with the addition of injectable
Pain control is critical in the management of TKA patients and is crucial to allow for early ambulation and accelerated physical therapy. Currently data suggests that 19% of patients are not satisfied with their results following TKA, and failure to control pain may result in prolonged hospitalization, worse outcomes, and increased patient dissatisfaction. Studies suggest that local analgesics coupled with both pre- and post-operative multimodal pain management may result in improved pain control and increased patient satisfaction. Minimization of opioid use is helpful in decreasing complications, accelerating physical therapy milestones, minimizing length of stay and increasing discharge to home. Femoral nerve blocks (FNB) can reduce pain scores for up to 48 hours post-operatively, but may delay ambulation and result in an increased rate of falls. Periarticular injection (PAI) with local analgesics can provide significant short term relief comparable to FNB and can also facilitate decreased opioid consumption. One commonly used local anesthetic is bupivacaine, but the average half-life of this drug is only 2.7 hours. An alternative to this for PAI during TKA is liposomal bupivacaine (LB). LB is a multivesicular drug designed for rapid absorption, prolonged release of bupivacaine, and analgesia that is maintained for up to 72 hours with a single injection. LB exhibits a bimodal peak of distribution, one immediate associated with extra-liposomal bupivacaine, and a second 10–36 hours later associated with the release of liposomal encapsulated bupivacaine. The safety profile of LB has been investigated and adverse events are similar to standard bupivacaine and demonstrate acceptable tolerability. Multiple studies have demonstrated efficacy of this drug compared to other pain control modalities. LB is highly technique dependent and only one piece of a multimodal pain management protocol. Our study consisted of 1808 consecutive primary TKA patients from Sept 2013 to Sept 2015. Three patient cohorts were compiled by date, from Sept 2013 to May 2014 was cohort 1, consisting of FNB and PCA. Department wide adoption of LB began in May 2014 and became routinely used in all patients undergoing total joint arthroplasty at our institution. Cohort 2 entailed a PCA along with LB injection from May 2014 through Feb 2015. Cohort 3 consisted of LB injection only and was from Feb 2015 through Sept 2015. All patients undergoing TKA were eligible and there were no exclusion criteria as long as the protocols were followed. The standard multi-modal analgesia protocol was provided to all patients in all three cohorts. Prior to entering the operating room, patients received preemptive oral analgesics, consisting of: 200 mg celecoxib, 1000 mg acetaminophen, and 50 mg pregabalin. Intra-operative analgesia was chosen at the discretion of the anesthesiologist and preferentially consisted of spinal anesthesia with general anesthesia as an alternate. For all three cohorts, a peri-incisional analgesic cocktail was injected prior to closure consisting of: 40 cc 0.25% Marcaine, 5 cc of (1 mg/cc) morphine, and 1 cc of (30 mg/cc)
Currently, there is no single, comprehensive national guideline for analgesic strategies for total joint replacement. We compared inpatient and outpatient opioid requirements following total hip arthroplasty (THA) versus total knee arthroplasty (TKA) in order to determine risk factors for increased inpatient and outpatient opioid requirements following total hip or knee arthroplasty. Outcomes after 92 primary total knee (n = 49) and hip (n = 43) arthroplasties were analyzed. Patients with repeat surgery within 90 days were excluded. Opioid use was recorded while inpatient and 90 days postoperatively. Outcomes included total opioid use, refills, use beyond 90 days, and unplanned clinical encounters for uncontrolled pain. Multivariate modelling determined the effect of surgery, regional nerve block (RNB) or neuraxial anesthesia (NA), and non-opioid medications after adjusting for demographics, ength of stay, and baseline opioid use.Aims
Methods