Advertisement for orthosearch.org.uk
Results 1 - 13 of 13
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 42 - 42
2 Jan 2024
Stoddart M
Full Access

Articulating cartilage experiences a multitude of biophysical cues. Due to its primary function in distributing load with near frictionless articulation, it is clear that a major stimulus for cartilage homeostasis and regeneration is the mechanical load it experiences on a daily basis. While these effects are considered when performing in vivo studies, in vitro studies are still largely performed under static conditions. Therefore, an increasing complexity of in vitro culture models is required, with the ultimate aim to recreate the articulating joint as accurately as possible. We have for many years utilized a complex multiaxial load bioreactor capable of applying tightly regulated compression and shear loading protocols. Using this bioreactor, we have been able to demonstrate the mechanical induction of human bone marrow stromal cell (BMSC) chondrogenesis in the absence of exogenous growth factors. Building on previous bioreactor studies that demonstrated the mechanical activation of endogenous TGFβ, and subsequent chondrogenesis of human bone marrow derived MSCs, we have been further increasing the complexity of in vitro models. For example, the addition of high molecular weight hyaluronic acid, a component of synovial fluid, culture medium leads to reduced hypertrophy and increased glycosaminoglycan deposition. The ultimate aim of all of these endeavors is to identify promising materials and therapies during in vitro/ ex vivo studies, therefore reducing the numbers or candidates that are finally tested using in vivo studies. This 3R approach can improve the opportunities for success while leading to more ethically acceptable product development pathways.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 1 | Pages 140 - 146
1 Jan 1997
Robinson RP Simonian PT Gradisar IM Ching RP

A three-dimensional computer model of a total hip replacement was used to examine the relationship between the position of the components, the range of motion and the prosthetic joint contact area. Horizontal acetabular positions with small amounts of acetabular and femoral anteversion provide the largest contact areas, but result in limited joint movement.

These data will allow surgeons to select implant positions that will provide the largest possible joint contact area for a given joint range of motion although these are conflicting goals. In some component positions a truncated spherical prosthetic head resulted in smaller contact areas than a completely spherical head.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 144 - 144
2 Jan 2024
Nürnberger S
Full Access

Translational models for OA have used a variety of small (mouse, rat) and large (sheep, pig) animal models to evaluate the efficacy of a specific therapy. Clinical trials based on the results of these animal models have yielded mixed results with respect to the treatment of the disease. Due to greater stringency in EU regulations in the use of animal models for research, ex vivo models of OA (e.g. cartilage explants, bioreactors) are being developed to mimic human joint motion as well as the inflammatory milieu (e.g. IL-1β) that can be used to understand efficacy of therapy in a physiological environment. The development of these models can enable therapies to undergo clinical trials in patients without the necessity for long-term animal studies. This presentation will describe the state of the art in this field and will discuss whether there is potential to speed up translation from bench to bedside in the future


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 35 - 35
17 Apr 2023
Afzal T Jones A Williams S
Full Access

Cam-type femoroacetabular impingement is caused by bone excess on the femoral neck abutting the acetabular rim. This can cause cartilage and labral damage due to increased contact pressure as the cam moves into the acetabulum. However, the damage mechanism and the influence of individual mechanical factors (such as sliding distance) are poorly understood. The aim of this study was to identify the cam sliding distance during impingement for different activities in the hip joint. Motion data for 12 different motion activities from 18 subjects, were applied to a hip shape model (selected as most likely to cause damage, anteriorly positioned with a maximum alpha angle of 80°). The model comprised of a pointwise representation of the acetabular rim and points on the femoral head and neck where the shape deviated from a sphere (software:Matlab). The movement of each femoral point was tracked in 3D while an activity motion was applied, and impingement recorded when overlap between a cam point and the acetabular rim occurred. Sliding distance was recorded during impingement for each relevant femoral point. Angular sliding distances varied for different activities. The highest mean (±SD) sliding distance was for leg-crossing (42.62±17.96mm) and lowest the trailing hip in golf swing (2.17±1.11mm). The high standard deviation in the leg crossing sliding distances, indicates subjects may perform this activity in a different manner. This study quantified sliding distance during cam impingement for different activities. This is an important parameter for determining how much the hip moves during activities that may cause damage and will provide information for future experimental studies


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 12 - 12
1 Apr 2017
Yasuda T Yokoi Y Oyanagi K Hamamoto K
Full Access

Background. Non-contact anterior cruciate ligament (ACL) injuries occurs with a higher incidence in female athletes compared with males after the onset of puberty. One anatomical factor with clinically observable differences between males and females is lower extremity alignment. The knee joint valgus in the coronal plane, which is associated with ACL injury risk, is composed of rotation of the tibia around the stationary femur and hip rotation combined with knee flexion. The purpose of this study was to prove the difference of hip rotation between female and male handball players with or without history of ACL injury. Methods. Elite collegiate athletes on the varsity handball team (17 females and 24 males) were recruited. Whereas 8 females and 1 male had a history of ACL injury, there were 9 females and 23 males with no history of ACL injury. The 6 measures of hip joint motion [flexion, extension, abduction, adduction, external rotation (ER), and internal rotation (IR)] and the 2 measures of knee joint motion (flexion and extension) were measured with the standard procedure using a goniometer. Results. The range of ER in ACL-injured females (37±7.5) was smaller than in uninjured females (49±8.2). The range of IR in ACL-injured female players (55±9.6) was greater than in uninjured females (41±13). There was no difference in ER+IR between ACL-injured and uninjured females. In the ACL-injured male handball player, ER was dominant to IR. Compared with the uninjured males, the ACL-injured female players showed smaller range of ER, greater ranges of IR and greater ER+IR. Conclusions. ACL-injured female handball players had greater hip IR with smaller hip ER, compared with uninjured counterpart. Hip rotation may be a crucial risk factor for ACL injury in female athletes. Level of evidence. 2b


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 90 - 90
1 Jan 2017
Conconi M Sancisi N Parenti-Castelli V
Full Access

The evaluation of knee stability is fundamental for the clinical discrimination between healthy and pathological joints, for the design and evaluation of prostheses and for the definition of articular models. Knee stability can be quantified by measuring the relation between applied single-axis constant loads and corresponding tibio-femoral displacements (i.e., translations and rotations), namely the joint stiffness, at a given flexion angle. No many studies are available in the literature on this topic [1–3]. In particular, the translations/rotations along/about directions different from the loaded one were not deeply investigated. A fresh frozen lower-limb specimen (female, 63 years old, weight 68 Kg, height 158 cm) was considered. The forefoot and all soft tissues outside the knee were removed by a surgeon, keeping the knee joint capsule intact. A stereophotogrammetric system (Vicon Motion Systems Ltd.) was used to measure the femoro-tibial relative motion by two trackers fixed to the bones, thus introducing no soft-tissue artifact. The specimen was then mounted on a test rig capable to exert general loading conditions [4], and constant loads were applied to the tibia: ±100 N in antero-posterior (AP) and medio-lateral (ML) direction; ±10 Nm about abb-adduction (AA) and in-external (IE) rotations. Loads were applied approximately at the mid-point between the lateral and medial epicondyles, and were kept constant while the femur was flexed over a 135° range. Displacements were defined with respect to the joint natural motion (RTNM), also registered with the same rig. The relative motion of the bones was expressed by a standard joint coordinate system [5]. Considerable translations/rotations appeared also on different directions than the loaded one. At 90° of flexion, an anterior load of +100 N produced 5.5 mm of anterior translation, 10.9 mm of medial translation and 12° of external rotation of the tibia (RTNM). When not directly loaded in ML and IE directions, the tibia translated medially and rotated externally, independently from the sign of the applied load: at 90° of flexion, an AA torque of +10 Nm and −10 Nm produced respectively 5 mm and 8.9 mm of medial translation, and 5.5° and 7.5° of external rotation of the tibia (RTNM). The load/displacement relation was highly non linear also for the loading direction. At 90° of flexion, IE torques of +10 Nm and −10 Nm produced respectively 3.6° of internal and 14.2° of external rotation of the tibia (RTNM). The knee joint structures make the relation between applied loads and bone displacements highly non linear. As a result, a load acting on one direction produces a complex three-dimensional joint motion. Future work will extend the presented analysis on several specimens, also increasing the magnitude and the number of loading conditions


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 43 - 43
1 Apr 2018
Seitz A Lippacher S Natsha A Reichel H Ignatius A Dürselen L Dornacher D
Full Access

Introduction. The medial patellofemoral ligament (MPFL) is the main stabilizer of the patella and therefore mostly reconstructed in the surgical correction of patellofemoral dislocation. Various biomechanical and clinical studies have been conducted on MPFL reconstruction, while the patellofemoral contact pressure (PFCP) which is indicated as one of the predictors of retropatellar osteoarthritis was neglected. Therefore, the aim of this study was to investigate how different MPFL reconstruction approaches affect PFCP. Material & Methods. After radiographic examination and preparation six human cadaveric knee joints (52.1 ± 8.4yrs) were placed in a 6-DOF knee simulator. Three flexion-extension cycles (0–90°) were applied, while the extensor muscles (175N) and an axial joint load (200N) were simulated. PFCP was measured in knee flexion of 0°, 30° and 90° using a calibrated pressure measurement system (K-Scan, Tekscan Inc., USA). The following MPFL conditions were examined: native (P. nat. ), anatomical reconstruction (P. a. ), proximal and distal patellar single-bundle reconstruction (P. p. , P. d. ), proximal and ventral femoral reconstruction (F. p. , F. v. ). The cohesive gracillis graft of each knee was used for MPFL reconstruction. Further, the effect of three different graft pre-tensioning levels (2N, 10N, 20N) on the PFCP were compared. Nonparametric statistical analysis was performed using SPSS (IBM Inc., USA). Results. In 0° knee flexion median PFCP of the native state (P. nat. =0.46MPa) was significantly higher (p=0.04) compared to the ventral femoral fixation state (F. v. =0.24MPa). No significant differences were observed in 30° knee flexion. In 90° knee flexion PCFP of both femoral reconstructions (F. p. =1.26MPa, F. v. =1.12MPa) were significantly higher (p<0.04) compared to the native state (P. nat. =0.43MPa). Graft pre-tensioning had no significant impact (p>0.27) on the PFCP in 0°, 30° and 90° knee flexion for all pre-tensioning levels. Discussion. We investigated the PFCP of different MPFL reconstructions and compared them during continuous joint motion from 0° to 90° knee flexion. While a non-anatomical graft fixation on the femoral side leads to an excessive increase of PFCP (293%), a non-anatomical positioning on the patellar side only showed minor impact on the PFCP. An anatomical MPFL reconstruction showed comparable PFCP to the native joint. In contrast to the literature, we did not find a significant influence of graft pre-tensioning from 2N up to 20N on the PFCP. With respect to all study findings we would recommend to use the anatomical footprints for MPFL reconstruction and a moderate graft pre-tensioning of 2N


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 60 - 60
1 Apr 2018
Jørsboe PH Pedersen MS Benyahia M Møller MH Kallemose T Speedtsberg MB Lauridsen HB Penny JØ
Full Access

Background. Severe hallux rigidus can be treated with total or hemi arthroplasty to preserve motion in the 1st metatarsophalangeal joint (MTPJ). Decreased dorsiflexion impairs the rollover motion of the 1st MTPJ and recent studies of patients with 1st MTPJ osteoarthritis show increased plantar forces on the hallux. Objectives. Our aim was to examine the plantar force variables under the hallux and the 1st, 2nd, and 3rd – 5th distal metatarsal head (MH) on patients operated with a proximal hemiarthroplasty (HemiCap) in the 1st MTPJ and compare to a control group of healthy patients. Secondary aims: To examine correlations between the force and the 1st MTPJ range of motion (ROM) and pain. Study Design & Methods. Seventy patients operated with HemiCap were invited. 41 were included, (10 men, 31 women), median operation date 2011(range 2007–2014), age 63(47–78), 37 unilateral and 4 bilateral. Dorsal ROM of the 1st MTPJ was measured by goniometer and by x-ray. Pain evaluated by visual analog scale (VAS 1–10) during daily activities (DA) and during testing (DT). Emed (Novel) Foot Pressure Mapping system was used to measure peak force (N) and force/time integral (N/s) under the hallux, 1st and 2nd and 3–5th metatarsal heads (MH). Statistics: Force variables between operated feet and control group were compared by independent two-sample t-test or Wilcoxon rank sum test. Force variables association to ROM and pain by linear regression models. Results. Median (range) for HemiCap/Control group: Peak force (N): Hallux: 12(1–26)/20(4–30), 1st MH: 17(8–41)/24(14–42), 2nd MH 24(15–37)/28(24–37), 3rd–5th MH: 27(18–36)/30(25–35). Force/time integral (N/s): Hallux: 1(1–4)/4(1–12), 1st MH: 5(2–18)/7(3–11), 2nd MH 8(4–13)/10(7–13), 3rd–5th MH: 9(6–15)/10(8–14). Significant difference between HemiCap patients and healthy controls in peak force and force/time integral was found under the hallux (p<0.01), 1st (p<0.05) and 2nd MH (p<0.05), and max force under the 3–5th MH (p<0.01). Dorsal ROM of the operated feet was 45 degrees (10–75) by goniometer and 41 degrees (16–70) by x-ray. An increase in dorsal ROM decreased the peak force and force/time integral under the hallux (p>0.05) but not under the MHs. Most patients reported no pain (VAS 1: 62% DA, 78% DT), only 2 patients reported VAS>3. No significant correlation between pain and force or force/time integral. Conclusions. A mid-term hemiarthroplasty do not restore the joint motion to normal. The loading patterns are in opposition to AO patients as as assfgjkdfgjkfdgjk the HemiCap patients show a significantly decreased peak force and force/time integral under the hallux compared to the control group and the larger the dorsiflexion achieved postoperatively the smaller the force/time integral becomes. It may reflect a patient reluctance to load the 1st ray and 2nd MH. The plantar forces are not linked to pain. Most report minimal pain, but the pain score is biased by missing numbers and exclusion of revisions


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 112 - 112
1 Apr 2017
Herregodts S De Baets P Victor J Verstraete M
Full Access

Background. Biomechanical joint contact pressure distribution measurements have proven to be a very valuable tool in orthopaedic research to investigate the influence of surgical techniques such as total knee arthroplasty (TKA) on the human knee joint. Quantification of the in vitro tibiofemoral and patellofemoral contact pressure distribution before and after the intervention are an important measure to evaluate the impact of the surgery. The K scan pressure sensor from Tekscan (South Boston USA) is a commonly reported device for these in vitro pressure measurements. Despite the large interest in the sensor, the effective measurement accuracy for in vitro biomechanical joint contact measurement still remains a big question and therefore the reliability of these measurements should be questioned. Methods. Reliable contact pressure measurements can only be done if the sensor behaviour is fully understood. Therefore, a tailored multi-axial testing machine has been designed to profoundly investigate and characterise the sensor behaviour. This test setup is unique through its ability to apply a predefined tangential force or sliding velocity to the sensor's interface next to a normal force. Dynamic effects occurring in knee joint motion can thus be simulated while evaluating the effect on the contact pressure measurements. Results. The change in contact friction coefficient by insertion of the sensor in the joint is quantified. Different interface conditions (dry, lubricated with PTFE spray, lubricated with surgical lubricant) have been evaluated to obtain the best sliding conditions and to minimise the undesired sensor accuracy deteriorating effects. Conclusion. An optimal calibration procedure is put forward and side-effects that deteriorate the measurement accuracy are quantified. The provided knowledge facilitates orthopaedic biomechanics researchers to optimally perform joint contact measurements and to estimate the effective measurement accuracy. In addition, the presented rig provides the opportunity to study the inherent knee kinematics and prosthesis shape optimisation through the inherent degrees of freedom in the rig


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 12 - 12
1 Jan 2017
Belvedere C Siegler S Ensini A Caravaggi P Durante S Leardini A
Full Access

Total ankle replacement (TAR) is the main surgical option in case of severe joint osteoarthritis. The high failure rate of current TAR is often associated to inappropriate prosthetic articulating surfaces designed according to old biomechanical concepts such the fixed axis of rotation, thus resulting in non-physiological joint motion. A recent image-based 3D morphological study of the normal ankle (Siegler et al. 2014) has demonstrated that the ankle joint surfaces can be approximated by a saddle-shaped cone with its apex located laterally (SSCL). We aimed at comparing the kinematic effects of this original solution both with the intact joint and with the traditional prosthetic articulating surfaces via in-silico models and in-vitro measurements. Native 3D morphology of ten normal cadaver ankle specimens was reconstructed via MRI and CT images. Three custom-fit ankle joint models were then developed, according to the most common TAR designs: cylindrical, symmetrically-truncated medial apex cone (as in Inman's pioneering measures), and the novel lateral apex cone, i.e. SSCL. Bone-to-bone motion, surface-to-surface distance maps, and ligament forces and deformations were evaluated via computer simulation. Prototypes of corresponding prosthesis components were designed and manufactured via 3D-printing, both in polymer-like-carbon and in cobalt-chromium-molybdenum powders, for in-vitro tests on the cadaver specimens. A custom testing rig was used for application of external moments to the ankle joint in the three anatomical planes; a motion tracking system with trackers pinned into the bone was used to measure tibial, talar and calcaneal motion (Franci et al. 2009), represented then as tibiotalar, subtalar and ankle complex 3D joint rotations. Each ankle specimen was tested in the intact joint configuration and after replacement of the articulating surfaces according with the three joint models: cylindrical, medial apex cone and SSCL. Results. Small intra-specimen data variability in cycle-to-cycle joint kinematics was found in all cadaver ankles, the maximum standard deviation of all rotation patterns being smaller than 2.0 deg. In-silico ligament strain/stress analysis and in-vitro joint kinematic and load transfer measurements revealed that the novel SSCL surfaces reproduce more natural joint patterns than those with the most common surfaces used in current TAR. TAR based on a saddle-shaped skewed truncated cone with lateral apex is expected to restore more normal joint function. Additional tests are undergoing for further biomechanical validation. The present study has also demonstrated the feasibility and the quality of the full process of custom TAR design and production for any specific subject. This implies a thorough procedure, from medical imaging to the production of artificial surfaces via 3D printing, which is allowing for personalised implants to become the future standard in total joint replacement


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 56 - 56
1 Jan 2017
Belvedere C Ensini A Tamarri S Ortolani M Leardini A
Full Access

In total knee replacement (TKR), neutral mechanical alignment (NMA) is targeted in prosthetic component implantation. A novel implantation approach, referred to as kinematic alignment (KA), has been recently proposed (Eckhoff et al. 2005). This is based on the pre-arthritic lower limb alignment which is reconstructed using suitable image-based techniques, and is claimed to allow better soft-tissue balance (Eckhoff et al. 2005) and restoration of physiological joint function. Patient-specific instrumentation (PSI) introduced in TKR to execute personalized prosthesis component implantation are used for KA. The aim of this study was to report knee kinematics and electromyography (EMG) for a number lower limb muscles from two TKR patient groups, i.e. operated according to NMA via conventional instrumentation, or according to KA via PSI. 20 patients affected by primary gonarthrosis were implanted with a cruciate-retaining fixed-bearing prosthesis with patella resurfacing (Triathlon® by Stryker®, Kalamazoo, MI-USA). 17 of these patients, i.e. 11 operated targeting NMA (group A) via convention instrumentation and 6 targeting KA (group B) via PSI (ShapeMatch® by Stryker®, Kalamazoo, MI-USA), were assessed clinically using the International Knee Society Scoring (IKSS) System and biomechanically at 6-month follow-up. Knee kinematics during stair-climbing, chair-rising and extension-against-gravity was analysed by means of 3D video-fluoroscopy (CAT® Medical System, Monterotondo, Italy) synchronized with 4-channel EMG analysis (EMG Mate, Cometa®, Milan, Italy) of the main knee ad/abductor and flexor/extensor muscles. Knee joint motion was calculated in terms of flex/extension (FE), ad/abduction (AA), and internal/external rotation (IE), together with axial rotation of condyle contact point line (CLR). Postoperative knee and functional IKSS scores in group A were 78±20 and 80±23, worse than in group B, respectively 91±12 and 90±15. Knee motion patterns were much more consistent over patients in group B than A. In both groups, normal ranges were found for FE, IE and AA, the latter being generally smaller than 3°. Average IE ranges in the three motor tasks were respectively 8.2°±3.2°, 10.1°±3.9° and 7.9°±4.0° in group A, and 6.6°±4.0°, 10.5°±2.5° and 11.0°±3.9° in group B. Relevant CLRs were 8.2°±3.2°, 10.2°±3.7° and 8.8°±5.3° in group A, and 7.3°±3.5°, 12.6°±2.6° and 12.5°±4.2° in group B. EMG analysis revealed prolonged activation of the medial/lateral vasti muscles in group A. Such muscle co-contraction was not generally observed in all patients in group B, this perhaps proving more stability in the knee replaced following the KA approach. These results reveal that KA results in better function than NMA in TKR. Though small differences were observed between groups, the higher data consistency and the less prolonged muscle activations detected using KA support indirectly the claim of a more natural knee soft tissue balance. References


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 72 - 72
1 Mar 2013
Akilapa O Prem H
Full Access

Background. Surgical resection of middle facet tarsal coalition is a well documented treatment option in symptomatic individuals that do not respond to conservative treatment. The ability to return to full recreational activity post resection may have implications on foot biomechanics and possibly degenerative changes in the subtalar and adjacent joints. Hypothesis. Open resection of middle facet tarsal coalitions should improve subtalar joint motion and biomechanical function and facilitate return to sports. Aim. The aim of this study was to assess the outcomes of open resection of middle facet tarsal coalitions (MFTCs) with particular emphasis on return to sports. Methods. Retrospective review of clinical and radiographic records of paediatric and adolescent patients who had open resection of middle facet tarsal coalitions. The ankle and hind foot were evaluated according to the American Orthopaedic Foot and Ankle Society Ankle-Hind foot Scale (AOFAS). We also quantified the return-to-activity time after tarsal coalition surgery. Results. We identified thirteen patients (Mean age; 13.7years Range; 7–21 years) with eighteen middle facet tarsal coalitions operated over a seven year period. Ten patients (12 feet) who underwent resection had an average return to recreational activity time of approximately twelve weeks and reported better exercise tolerance post resection. Conclusion. Surgical excision of middle facet tarsal coalitions has a favourable outcome with respect to return to sports


Bone & Joint Research
Vol. 6, Issue 4 | Pages 196 - 203
1 Apr 2017
Jin Y Chen X Gao ZY Liu K Hou Y Zheng J

Objectives

This study aimed to explore the role of miR-320a in the pathogenesis of osteoarthritis (OA).

Methods

Human cartilage cells (C28/I2) were transfected with miR-320a or antisense oligonucleotides (ASO)-miR-320a, and treated with IL-1β. Subsequently the expression of collagen type II alpha 1 (Col2α1) and aggrecan (ACAN), and the concentrations of sulfated glycosaminoglycans (sGAG) and matrix metallopeptidase 13 (MMP-13), were assessed. Luciferase reporter assay, qRT-PCR, and Western blot were performed to explore whether pre-B-cell leukemia Homeobox 3 (PBX3) was a target of miR-320a. Furthermore, cells were co-transfected with miR-320a and PBX3 expressing vector, or cells were transfected with miR-320a and treated with a nuclear factor kappa B (NF-κB) antagonist MG132. The changes in Col2α1 and ACAN expression, and in sGAG and MMP-13 concentrations, were measured again. Statistical comparisons were made between two groups by using the two-tailed paired t-test.