Advertisement for orthosearch.org.uk
Results 1 - 20 of 30
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 38 - 38
1 Apr 2018
LaCour M Ta M Sharma A Komistek R
Full Access

Background. In vivo fluoroscopic studies have proven that femoral head sliding and separation from within the acetabular cup during gait frequently occur for subjects implanted with a total hip arthroplasty. It is hypothesized that these atypical kinematic patterns are due to component malalignments that yield uncharacteristically higher forces on the hip joint that are not present in the native hip. This in vivo joint instability can lead to edge loading, increased stresses, and premature wear on the acetabular component. Objective. The objective of this study was to use forward solution mathematical modeling to theoretically analyze the causes and effects of hip joint instability and edge loading during both swing and stance phase of gait. Methods. The model used for this study simulates the quadriceps muscles, hamstring muscles, gluteus muscles, iliopsoas group, tensor fasciae latae, and an adductor muscle group. Other soft tissues include the patellar ligament and the ischiofemoral, iliofemoral, and pubofemoral hip capsular ligaments. The model was previously validated using telemetric implants and fluoroscopic results from existing implant designs. The model was used to simulate theoretical surgeries where various surgical alignments were implemented and to determine the hip joint stability. Parameters of interest in this study are joint instability and femoral head sliding within the acetabular cup, along with contact area, contact forces, contact stresses, and ligament tension. Results. During swing phase, it was determined that femoral head pistoning is caused by hip capsule laxity resulting from improperly positioned components and reduced joint tension. At the point of maximum velocity of the foot (approximately halfway through), the momentum of the lower leg becomes too great for a lax capsule to properly constrain the hip, leading to the femoral component pistoning outwards. This pistoning motion, leading to separation, is coupled with a decrease in contact area and an impulse-like spike in contact stress (Figure 1). During stance phase, it was determined that femoral head sliding within the acetabular cup is caused by the proprioceptive notion that the human hip wants to rotate about its native, anatomical center. Thus, component shifting yields abnormal forces and torques on the joint, leading to the femoral component sliding within the cup. This phenomenon of sliding yields acetabular edge-loading on the supero-lateral aspect of the cup (Figure 2). It is also clear that joint sliding yields a decreased contact area, in this case over half of the stable contact area, corresponding to a predicted increase in contact stress, in this case over double (Figure 2). Discussion. From our current analysis, the causes and effects of hip joint instability are clearly demonstrated. The increased stress that accompanies the pistoning/impulse loading scenarios during swing phase and the supero-lateral edge-loading scenarios during stance phase provide clear explanations for premature component wear on the cup, and thus the importance of proper alignment of the THA components is essential for a maximum THA lifetime. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 60 - 60
1 Feb 2020
Kaper B
Full Access

Introduction/Aim. The NAVIO robotic-assisted TKA (RA-TKA) application received FDA clearance in May 2017. This semi-active robotic technique aims to improve the accuracy and precision of total knee arthroplasty. The addition of robotic-assisted technology, however, also introduces another potential source of surgery-related complications. This study evaluates the safety profile of NAVIO RA-TKA. Materials and Methods. Beginning in May 2017, the first 250 patients undergoing NAVIO RA-TKA were included in this study. All intra-operative complications were recorded, including: bleeding; neuro-vascular injury; peri-articular soft tissue injury; extensor mechanism complications; and intra-operative fracture. During the first 90 days following surgery, patients were monitored for any post-operative complications, including: superficial and deep surgical site infection; pin-tract infection; pin site fractures; peri-prosthetic fractures; axial or sagittal joint instability; axial mal-alignment; patello-femoral instability; DVT/PE; re-operation or re-admission due to surgical-related complications. Surgical technique and multi-modality pain management protocol was consistent for all patients in the study. A combined anesthetic technique was employed for all cases, including: low-dose spinal, adductor canal block and general anesthetic. Patients were mobilized per our institution's rapid recovery protocol. Results. No patients were lost to follow-up. During the study period, no intra-operative complications were recorded. Specifically, no complications related to the introduction of the high-speed burr associated with the NAVIO RA-TKA were noted. Within the 90-day follow-up period, there was one case of deep infection. One patient sustained a fall resulting in a peri-prosthetic femoral fracture, that occurred remote from the femoral pin tracts. No cases of axial or sagittal joint instability, axial mal-alignment, patello-femoral instability, pin site infections or fractures; or DVT/PE were identified. Four patients underwent manipulation under anesthesia. No other patients required a re-operation or re-admission due to surgical-related complications. Discussion/Conclusions. The initial experience with the NAVIO robotic assisted total knee arthroplasty has demonstrated excellent safety profile. Relative to known risks associated with total knee arthroplasty, no increased risk of peri-operative complications, re-operation or re-admission for surgical related complications was identified with the introduction of the NAVIO RA-TKA


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 5 - 5
1 Dec 2022
Li T Beaudry E Westover L Chan R
Full Access

The Adams-Berger reconstruction is an effective technique for treating distal radioulnar joint (DRUJ) instability. Graft preparation techniques vary amongst surgeons with insufficient evidence to support one technique over another. Our study evaluated the biomechanical properties of four graft preparation techniques. Extensor tendons were harvested from fresh frozen porcine trotters obtained from a local butcher shop and prepared in one of three configurations (n=5 per group): tendon only; tendon prepared with non-locking, running suture (2-0 FiberLoop, Arthrex, Naples, FL) spaced at 6 mm intervals; and tendon prepared with suture spaced at 12 mm intervals. A fourth configuration of suture alone was also tested. Tendons were allocated in a manner to ensure comparable average diameters amongst groups. Biomechanical testing occurred using custom jigs simulating radial and ulnar tunnels attached to a Bose Electroforce 3510 mechanical testing machine (TA Instruments). After being woven through the jigs, all tendons were sutured end-to-end with 2-0 PROLENE suture (Ethicon). Tendons then underwent a staircase cyclic loading protocol (5-25 Newtons [N] at 1 hertz [Hz] for 1000 cycles, then 5-50 N at 1 Hz for 1000 cycles, then 5-75 N at 1 Hz for 1000 cycles) until graft failure; if samples did not fail during the protocol, they were then loaded to failure. Samples were visually inspected for mode of failure after the protocol. A one-way analysis of variance was used to compare average tendon diameter; post-hac Tuhey tests were used to compare elongation and elongation rate. Survival to cyclic loading was analyzed using Kaplan-Meier survival curves with log rank. Statistical significance was set at a = 0.05. The average tendon diameter of each group was not statistically different [4.17 mm (tendon only), 4.33 mm (FiberLoop spaced 6 mm), and 4.30 mm (FiberLoop spaced 12 mm)]. The average survival of tendon augmented with FiberLoop was significantly higher than tendon only, and all groups had significantly improved survival compared to suture only. There was no difference in survival between FiberLoop spaced 6 mm and 12 mm. Elongation was significantly lower with suture compared to tendon augmented with FiberLoop spaced 6 mm. Elongation rate was significantly lower with suture compared to all groups. Modes of failure included rupture of the tendon, suture, or both at the simulated bone and suture and/or tendon interface, and elongation of the entire construct without rupture. In this biomechanical study, augmentation of porcine tendons with FiberLoop suture spaced at either 6 or 12 mm for DRUJ reconstruction significantly increased survival to a staircase cyclic loading protocol, as suture material was significantly stiffer than any of the tendon graft configurations


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 37 - 37
1 Apr 2018
LaCour M Ta M Sharma A Komistek R
Full Access

Background. Extensive research has previously been conducted analyzing the biomechanical effects of rotational changes (i.e. version and inclination) of the acetabular cup. Many sources, citing diverse dislocation statistics, encourage surgeons to strive for various “safe zones” during the THA operation. However, minimal research has been conducted, especially under in vivo conditions, to assess the consequences of cup translational shifting (i.e. offsets, medial and superior reaming, etc.). While it is often the practice to medialize the acetabular cup intraoperatively, there is still a lack of information regarding the biomechanical consequences of such cup medializations and medial/superior malpositionings. Objective. Therefore, the objective of this study is to use a validated forward solution mathematical model to vary cup positioning in both the medial and superior directions to assess simulated in vivo kinematics. Methods. The model used for this study has been validated with telemetric data and incorporates numerous muscles and ligaments. The model is parametrically derived and allows the user to simulate a theoretical THA surgery and to assess the outcomes of proper positioning as well as malpositioning of the cup. Parameters of interest in this study are component positions, joint instability and sliding, and contact area. Results. An intraoperative representation of the pelvis and cup was assessed (Figure 1), with a green star showing the native anatomical center, the red circle showing the acetabular cup center, and the arrow representing the reaming direction. During swing phase, it was determined that unaccounted for acetabular cup shifting of 5–10 mm leads to capsular ligament laxity coupled with an increase in hip joint instability. Two swing phase scenarios were assessed, one simulating adequate capsular tension and therefore a uniform contact patch and the other simulating inadequate capsule tension and therefore femoral component pistoning with a smaller contact patch (Figure 2). During stance phase, it was determined that acetabular cup shifting of 5–10 mm in the medial and/or superior directions yields an increase in hip joint instability. Two stance phase scenarios were simulated, one yielding no hip separation and therefore a uniform, centralized contact patch, and the other yielding ∼1.5 mm of hip separation and therefore a non-uniform, supero-lateral edge loading patch (Figure 3). Cup orientation does not appear to directly cause hip instability, but it will either lessen or exacerbate the instability, depending on the specific scenario. The results in this study did reveal that overly-inclined cups will yield less stability in the lateral direction, and overly-anteverted cups will yield less stability in the anterior direction. Discussion. In general, instability during stance phase comes in the form of femoral head sliding and edge loading, and instability during swing phase comes in the form of femoral head pistoning. This study's analyses did reveal that proper alignment of the acetabular cup is required for ideal clinical results. The results from this study dictate that proper translational alignment of the cup as well as rotational alignment is necessary for patient stability and proper hip mechanics. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 66 - 66
1 Jul 2020
Tat J Chong J Powell T Martineau PA
Full Access

Anterior shoulder instability is associated with osseous defects of the glenoid and/or humeral head (Hill-Sachs lesions). These defects can contribute to the pathology of instability by engaging together. There is a need to continue to develop methods to preoperatively identify engaging Hill-Sachs lesions for determining appropriate surgical management. The objective was to created a working moveable 3D CT model that allows the user to move the shoulder joint into various positions to assess the relationship between the Hill-Sachs lesion and the anterior glenoid rim. This technique was applied to a cohort series of 14 patients with recurrent anterior dislocation: 4 patients had undergone osteoarticular allografting of Hill-Sachs lesions and 10 control patients had undergone CT scanning to quantify bone loss but had no treatment to address bony pathology. A biomechanical analysis was performed to rotate each 3D model using local coordinate systems through a functional range using an open-source 3D animation program, Blender (Amsterdam, Netherlands). A Hill-Sachs lesion was considered “dynamically” engaging if the angle between the lesion's long axis and anterior glenoid was parallel. In the classical vulnerable position of the shoulder (abduction=90, external rotation=0–135), none of the Hill-Sachs lesions aligned with the anterior glenoid in any of our patients (Figure 1). Therefore, we considered there to be a “low risk” of engagement in these critical positions, as the non-parallel orientation represents a lack of true articular arc mismatch and is unlikely to produce joint instability. We then expanded our search and simulated shoulder positions throughout a physiological range of motion for all groups and found that 100% of the allograft patients and 70% of the controls had positions producing alignment and were “high risk” of engagement (p = 0.18) (Table 1). We also found that the allograft group had a greater number of positions that would engage (mean 4 ± 1 positions of engagement) compared to our controls (mean 2 ± 2 positions of engagement, p = 0.06). We developed a 3D animated paradigm to dynamically and non-invasively visualize a patient's anatomy and determine the clinical significance of a Hill-Sachs lesion using open source software and CT images. The technique demonstrated in this series of patients showed multiple shoulder positions that align the Hill-Sachs and glenoid axes that do not necessarily meet the traditional definition of engagement. Identifying all shoulder positions at risk of “engaging”, in a broader physiological range, may have critical implications towards selecting the appropriate surgical management of bony defects. We do not claim to doubt the classic conceptual definition of engagement, but we merely introduce a technique that accounts for the dynamic component of shoulder motion, and in doing so, avoid limitations of a static criteria assumed traditional definition (like size and location of lesion). Further investigations are planned and will help to further validate the clinical utility of this method. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 106 - 106
1 Feb 2020
Wise C Oladokun A Maag C
Full Access

Introduction. Femoral neck impingement occurs clinically in total hip replacements (THR) when the acetabular liner articulates against the neck of a femoral stem prosthesis. This may occur in vivo due to factors such as prostheses design, patient anatomical variation, and/or surgical malpositioning, and may be linked to joint instability, unexplained pain, and dislocation. The Standard Test Method for Impingement of Acetabular Prostheses, ASTM F2582 −14, may be used to evaluate acetabular component fatigue and deformation under repeated impingement conditions. It is worth noting that while femoral neck impingement is a clinical observation, relative motions and loading conditions used in ASTM F2582-14 do not replicate in vivo mechanisms. As written, ASTM F2582-14 covers failure mechanism assessment for acetabular liners of multiple designs, materials, and sizes. This study investigates differences observed in the implied and executed kinematics described in ASTM F2582-14 using a Prosim electromechanical hip simulator (Simulation Solutions, Stockport, Greater Manchester) and an AMTI hydraulic 12-station hip simulator (AMTI, Watertown, MA). Method. Neck impingement testing per ASTM F2582-14 was carried out on four groups of artificially aged acetabular liners (per ASTM F2003-15) made from GUR 1020 UHMWPE which was re-melted and cross-linked at 7.5 Mrad. Group A (n=3) and B (n=3) consisted of 28mm diameter femoral heads articulating on 28mm ID × 44mm OD acetabular liners. Group C (n=3) and D (n=3) consisted of 40mm diameter femoral heads articulating on lipped 40mm ID × 56mm OD 10° face changing acetabular liners. All acetabular liners were tested in production equivalent shell-fixtures mounted at 0° initial inclination angle. Femoral stems were potted in resin to fit respective simulator test fixtures. Testing was conducted in bovine serum diluted to 18mg/mL protein content supplemented with sodium azide and EDTA. Groups A and C were tested on a Prosim; Groups B and D were tested on an AMTI. Physical examination and coordination measurement machine (CMM) analyses were conducted on all liners pre-test and at 0.2 million cycle intervals to monitor possible failure mechanisms. Testing was conducted for 1.0 million cycles or until failure. An Abaqus/Explicit model was created to investigate relative motions and contact areas resulting from initial impingement kinematics for each test group. Results. Effects of kinematic differences in the execution of ASTM F2582-14 were observed in the four groups based on simulator type (Figure 1) and liner design. The Abaqus/Explicit FEA model revealed notable differences in relative motions and contact points (Figure 2) between specimen components i.e. acetabular liner, femoral head, and femoral stem throughout range of motion. Acetabular liner angular change within shell-fixtures, rim deformation, crack propagation, and metal-on-metal contact between acetabular shell-fixtures and femoral stems were observed as potential failure mechanisms (Figure 3) throughout testing. These mechanisms varied in severity by group due to differing contact stresses and simulator constraints. Significance. Investigating failure mechanisms caused by altered kinematics of in-vitro neck impingement testing, due to influences of simulator type and acetabular liner design, may aid understanding of failure mechanisms involved when assessing complaints/retrievals and influence future prosthetic designs. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 84 - 84
1 May 2012
M.A. R L. VN
Full Access

Chronic patello-femoral joint instability leads to recurrent subluxation and dislocation affecting knee function and preventing participation at sport. Traumatic dislocation of the patella results in rupture of the medial patello-femoral ligament (MPFL) in the majority of cases with a high incidence of chronic instability after a second dislocation. MPFL reconstruction can prevent recurrent dislocation and improve knee function. We report on our experience in MPFL reconstruction using hamstring tendons and its effect on the knee function in patients with chronic patello-femoral joint instability. In this prospective study from 2005 to 2008, 68 patients (69 knees) with chronic patello-femoral instability were treated with MPFL reconstruction through a minimally invasive and arthroscopically assisted approach. In this procedure the semintendonosis with or without the gracilis tendon is routed from the pes anserinus to the most distal portion of the medial intramuscular septum before being secured to the superomedial border of the patella. All patients were evaluated pre-operatively and then post-operatively for a mean of 25 months (range 12-48 months). Knee function was assessed by the Tegner, Kujala and Lysholm scores. There were 44 (65%) women and 24 (35%) men. Average age was 27 years. There were 2.7 mean pre-operative patellar dislocations (range 2-7). Mean follow-up was 19.6 months (range 12 to 56 months). IKDC score improved from 48.2 to 74.2, Kujala scores improved from 55.4 to 85.3. Lysholm scores improved from 52.4 to 77.3. Tegner activity scores improved from 2.5 to 5.4. There were overall 87% good to excellent results. No recurrent dislocations or wound related complications. Medial patello-femoral reconstruction can provides excellent results in the treatment of patello-femoral joint instability with poor knee function


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 14 - 14
1 Mar 2021
Au K Gammon B Undurraga S Culliton K Louati H D'Sa H
Full Access

The clinical diagnosis of distal radioulnar joint (DRUJ) instability remains challenging. The current diagnostic gold standard is a dynamic computerized topography (CT) scan. This investigation compares the affected and normal wrists in multiple static positions of forearm rotation.. However, its accuracy has been questioned, as the wrist is unloaded and not placed under stress. This may fail to capture DRUJ instability that does not result in static malalignment between the ulnar head and sigmoid notch. The purpose of this biomechanical study was to evaluate the effectiveness of both dynamic and stress CT scans in detecting DRUJ instability. A customized DRUJ arthrometer was designed that allows for both static positioning, as well as dorsal and volar loading at the DRUJ in various degrees of forearm rotation. Ten fresh frozen cadavers were prepared and mounted in the apparatus. CT scans were performed both in the unloaded condition (dynamic CT) and with each arm subjected to a standardized 50N volar and dorsal force (stress CT) in neutral and maximum pronation/ supination. The TFCC (triangular fibrocartilage complex)was then sectioned peripherally to simulate DRUJ instability and the methodology was repeated. CT scans were then evaluated for displacement using the radioulnar ratio method. When calculating the radioulnar ratio for intact wrists using the dynamic CT technique, values were 0.50, 0.64, 0.34 for neutral, pronation and supination, respectively. When the TFCC was sectioned and protocol repeated, the values for the simulated unstable wrist for dynamic CT were 0.54, 0.62, 0.34 for neutral, pronation and supination, respectively. There was no statistically significant difference between the intact and sectioned states for any position of forearm rotation using dynamic CT. Usingstress CT, mean radioulnar ratios for the intact specimens were calculated to be 0.44, 0.36 and 0.31 for neutral, pronation and supination, respectively. After sectioning the TFCC, the radioulnar ratios increased to 0.61, 0.39 and 0.46 for neutral, pronation and supination. There was a statistically significant difference between intact and simulated-unstable wrists in supination (p = 0.002) and in neutral (p=0.003). The radioulnar ratio values used to measure DRUJ translation for dynamic CT scans were unable to detect a statistically significant difference between stable and simulated unstable wrists. This was true for all positions of forearm rotation. However, when a standard load was placed across the DRUJ, statically significant changes in the radioulnar ratio were seen in neutral and supination between stable and simulated unstable wrists. This discrepancy challenges the current gold standard of dynamic CT in its ability to accurately diagnosis DRUJ instability. It also introduces stress CT as a possible solution for diagnosing DRUJ instability from peripheral TFCC lesions


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 73 - 73
1 Mar 2017
Park S Kang H Yang T
Full Access

Introduction. The purpose of this study was to demonstrate postoperative improvement and high satisfaction rates after a surgical approach that includes arthroscopic labral repair only, in patients with borderline dysplasia, without instability. Methods. Between September 2009 and December 2011, patients less than 50 years old who underwent hip arthroscopy for symptomatic intra-articular hip disorders, with a lateral center-edge (CE) angle between 20 and 25, were included in this study. Patients with Tönnis grade 2 or greater, hip joint space narrowing, severe hip dysplasia (CE〈20), hip joint instability and Legg-Calve-Perthes disease were excluded. Patient-reported outcome scores, including the modified Harris Hip Score (mHHS), Western Ontario and McMaster Universities Arthritis index (WOMAC), and visual analog scale (VAS) for pain were obtained in all patients preoperatively and at 1, 2, and 3 years postoperatively. Results. A total of 36 patients met the criteria to be included in the study. Of these, 32 (88.8%) patients were available for follow-up. There was a significant improvement in mHHS from 67.19±7.66 to 82.69±6.95 (P<0.001), and WOMAC score from 58.90±5.77 to 77.90±6.38 (P<0.001). There was a significant improvement in VAS scores from 5.8 to 2.9 (P<0.001). There was a significant improvement in range of motion, flexion from 108.44±7.77 to 115.31±6.08 (P<0.001) and external rotation from 29.06±5.74 to 33.13±4.88 (P<0.001). Conclusions. The current study demonstrates favorable results in borderline dysplasia hip without instability at minimum 3-year follow-up for an arthroscopic approach that includes labral repair. Labrum is the main key-stone structure, which should be preserved in borderline dysplasia hip for functional and pain improvement. Also the prognosis of treatment is probably forecasted more by the nature of stability and the intra-articular pathology rather than simply the presence or absence of radiographic finding of borderline dysplasia


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 110 - 110
1 May 2016
Park S Jeong S Lee S
Full Access

Purpose. The purpose of this study was to demonstrate postoperative improvement and high satisfaction rates after a surgical approach that includes arthroscopic labral repair only, in patients with borderline dysplasia, without instability. Methods. Between September 2009 and December 2011, patients less than 50 years old who underwent hip arthroscopy for symptomatic intra-articular hip disorders, with a lateral center-edge (CE) angle between 20 and 25, were included in this study. Patients with Tönnis grade 2 or greater, hip joint space narrowing, severe hip dysplasia, hip joint instability and Legg-Calve-Perthes disease were excluded. Patient-reported outcome scores, including the modified Harris Hip Score (mHHS), Western Ontario and McMaster Universities Arthritis index (WOMAC), and visual analog scale (VAS) for pain were obtained in all patients preoperatively and at 1, 2, and 3 years postoperatively. Results. A total of 36 patients met the criteria to be included in the study. Of these, 32 (88.8%) patients were available for follow-up. There was a significant improvement in mHHS from 67.19 ± 7.66 to 82.69 ± 6.95 (P<0.05), WOMAC score from 58.90 ± 5.77 to 77.90 ± 6.38 (P<0.05), and VAS scores from 5.8 ± 0.88 to 2.9 ± 0.62 (P<0.05). There was a also improvement in range of motion, flexion from 108.44 ± 7.77 to 115.31 ± 6.08 (P<0.05) and external rotation from 29.06 ± 5.74 to 33.13 ± 4.88 (P<0.05). Conclusions. The current study demonstrates favorable results in borderline dysplasia hip without instability at minimum 3-year follow-up for an arthroscopic approach that includes labral repair. Labrum is the main key-stone structure, which should be preserved in borderline dysplasia hip for functional and pain improvement


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 15 - 15
1 Feb 2017
Higashi H Kaneyama R Shiratsuchi H Oinuma K Miura Y Tamaki T Jonishi K Yoshii H
Full Access

Objective. In a cruciate retaining total knee arthroplasty (CR-TKA) for patients with flexion contracture, to ensure that an extension gap is of sufficient size to install an implant, the amount of distal femur bone resection needed is frequently larger in a patient with knee flexion contracture than in one without contracture. In this study, we compared the distal femur bone resection amount, the component-secured extension gap margin value, and the range of motion at 6 months after surgery between patients with knee flexion contracture and those without knee flexion contracture. Method. We examined 51 joints including 27 joints in patients with preoperative extension limitation of less than 5 degrees (the F0 group) and 24 joints in patients with limitation of 15 degrees or larger (up to 33 degrees; the FC group) who underwent CR-TKA with LCS RP (DePuy Synthes) between May 2013 and April 2014. In case with an extension gap 3 mm or smaller than the flexion gap after initial bone resection, we released posterior capsule adequately, trying to minimize the distal femur additional bone resection amount as possible. With installation of a femoral trial, the component gaps were measured using spacer blocks. The measured parameters included the intraoperative bone resection length, gap difference (FG − EG, i.e., difference between the flexion gap [FG] and extension gap [EG]), and range of motion 6 months after surgery. Results. No inter-group difference was found in the length of the distal femur bone initially resected in the medial side of distal femur(F0: 6.7 ± 1.3 mm, FC: 6.1 ± 1.4 mm) and total length of bone resection (= first + additional resection) in the lateral proximal tibia (F0: 10.3 ± 1.9 mm, FC: 10.4 ± 2.1 mm). The length of the additional distal femur bone resected was 0.9 ± 1.3 mm in the F0 and 1.5 ± 1.2 mm in the FC (P = 0.06; Mann-Whitney U). The FG-EG (F0: 0.7 ± 0.9 mm, FC: 0.6 ± 0.8 mm) showed no remarkable inter-group difference. The mean range of motion was changed from −2.3° to −0.6° at extension and from 130.4° to 128.7° at flexion in the F0 and from −19.8° to −2.7° at extension and from 113.7° to 122.3° at flexion in the FC. Conclusions. The amount of distal femur bone resected should not be simply increased because this may elevate the joint line, narrow the flexion range, and cause the joint instability in mid-flexion. The results of this study show that, in CR-TKA for patients with flexion contracture up to 30°, the length of distal femoral bone resection of approximately 1 mm larger than that in patients without contracture may ensure an extension gap of necessary and sufficient length to install an implant


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 84 - 84
1 Jan 2016
Jonishi K Kaneyama R Higashi H Oinuma K Shiratsuchi H
Full Access

Introduction. Incorrect restoration of the joint line during total knee arthroplasty (TKA) can result in joint instability, anterior knee pain, limited range of motion, and joint stiffness. Although restoration of the correct joint line (i.e., creating an optimal gap in extension and flexion) should be considered in all TKA procedures, no surgical techniques have been established for restoring it. We performed the femoral posterior condylar precut technique (Kaneyama R. Bone Joint Res. 2014; 3) in 91 TKA cases and evaluated the joint line by measuring the thickness of the surgically removed femoral bone and femoral components. Methods. A total of 91 knees in 73 patients who underwent primary TKA between June and December 2013 were reviewed retrospectively. The posterior cruciate ligament was preserved in all patients. First, in the femoral posterior condylar precut technique, the extension gap was created by the measured resection technique. Then we created a temporary gap in flexion 4 mm smaller than that created by the measured resection technique and remove posterior osteophytes and soft tissue for good ligament balance. Once the component gap was determined, final femoral posterior condyle cutting was performed to create an optimal gap and rotation. We evaluated the joint line from the differences in thickness between the surgically removed femoral bone and femoral components, and revised the thickness of the bone saw accordingly. The value was positive when the joint line had been raised and negative when it had been lowered. Results. Subjects were 17 men (20 knees) and 56 women (71 knees) with a mean age of 72.6 years. The amount of distal femoral bone surgically removed was 8.5±1.8 mm (medial) and 8.3±2.0 mm (lateral) and that of posterior bone was 9.8±1.2 mm (medial) and 7.2±0.8 mm (lateral). The difference in the joint line was −0.4±2.2 mm (medial) and 0.5±3.9 mm (lateral) in extension and 1.1±2.7 mm (medial) and −0.6±1.9 mm (lateral) in flexion. Discussion. There are no established surgical techniques for restoring the joint line. Typically, surgical procedures are decided preoperatively by considering the amount of femoral bone to be surgically removed and rotation and cannot be changed during the operation if the gap is found to be incorrect. In our femoral posterior condylar precut technique, however, is possible to fine-tune it at the final step in surgery, making it possible to control the surgical removal of femoral bone, thereby reducing differences in the joint line


Bone & Joint Open
Vol. 2, Issue 2 | Pages 134 - 140
24 Feb 2021
Logishetty K Edwards TC Subbiah Ponniah H Ahmed M Liddle AD Cobb J Clark C

Aims

Restarting planned surgery during the COVID-19 pandemic is a clinical and societal priority, but it is unknown whether it can be done safely and include high-risk or complex cases. We developed a Surgical Prioritization and Allocation Guide (SPAG). Here, we validate its effectiveness and safety in COVID-free sites.

Methods

A multidisciplinary surgical prioritization committee developed the SPAG, incorporating procedural urgency, shared decision-making, patient safety, and biopsychosocial factors; and applied it to 1,142 adult patients awaiting orthopaedic surgery. Patients were stratified into four priority groups and underwent surgery at three COVID-free sites, including one with access to a high dependency unit (HDU) or intensive care unit (ICU) and specialist resources. Safety was assessed by the number of patients requiring inpatient postoperative HDU/ICU admission, contracting COVID-19 within 14 days postoperatively, and mortality within 30 days postoperatively.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 74 - 74
1 Jan 2016
Geraldes D Hansen U Jeffers J Amis A
Full Access

Common post-operative problems in shoulder arthroplasty such as glenoid loosening and joint instability can be reduced by improvements in glenoid design shape, material choice and fixation method [1]. Innovation in shoulder replacement is usually carried out by introducing incremental changes to functioning implants [2], possibly overlooking other successful design combinations. We propose an automated framework for parametric analysis of implant design in order to efficiently assess different possible glenoid configurations. Parametric variations of reference geometries of a glenoid implant were automatically generated in SolidWorks. The different implants were aligned and implanted with repeatability using Rhino. The glenoid-bone models were meshed in Abaqus, and boundary conditions and loading applied via a custom-made Python script. Finally, another MATLAB script integrated and automated the different steps, extracted and analysed the results. This study compared the influence of reference shape (keel vs. 2-pegged) and material on the von Mises stresses and tensile and compressive strains of glenoid components with bearing surface thickness and fixation feature width of 3, 4, 5 or 6 mm. A total of 96 different glenoid geometries were implanted into a bone cube (E = 300 MPa, ν = 0.3). Fixed boundary conditions were applied at the distal surface of the cube and a contact force of 1000 N was distributed between the central nodes on the bearing surface. The implants were assigned UHMWPE (E = 1 GPa, ν = 0.46), Vitamin E PE (E = 800 MPa, ν = 0.46), CFR-PEEK (E = 18 GPa, ν = 0.41) or PCU (E = 2 GPa, ν = 0.38) material properties and the bone-implant surface was tied (Figure 1). The von Mises stresses, compressive and tensile strains for the different models were extracted. The influence of design parameters in the mechanical environment of the implant could be assessed. In this particular example, the 95. th. percentile values of the tensile and compressive strains induced by modifications in reference shape could be evaluated for all the different geometries simultaneously in form of radar plots. 2-pegged geometries (green) consistently produced lower tensile and compressive strains than the keeled (blue) configurations (Figure 2). Vitamin E PE and PCU glenoids also produced lower maximum von Mises stresses values than CFR-PEEK and UHMWPE designs (Figure 3). The developed method allows for simple, direct, rapid and repeatable comparison of different design features, material choices or fixation methods by analysing how they influence the mechanical environment of the bone surrounding the implant. Such tool can provide invaluable insight in implant design optimisation by screening through multiple potential design modifications at an early design evaluation stage and highlighting the best performing combinations. Future work will introduce physiological bone geometries and loading, a wider variety of reference geometries and fixation features, and look at bone/interface strength and osteointegration predictions


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 171 - 171
1 Sep 2012
Armitage MS Elkinson I Giles JW Athwal GS
Full Access

Purpose. Coracoid transfer is an effective reconstructive procedure for complex glenohumeral joint instability. Recently, the congruent-arc Latarjet procedure has been described which orients the coracoid graft undersurface flush to the glenoid articular margin. The purported advantage of this modification is that the radii of curvature of the coracoid undersurface and the anterior glenoid rim are believed to be similar, and therefore, congruent. The purpose of this study was to determine the dimensions of the coracoid and to compare the radius of curvature (ROC) of the coracoid undersurface to the ROC of the intact glenoid and various glenoid bone-loss scenarios. Method. Thirty-four CT-based 3D models of the shoulder were examined using commercially available software. The mean dimensions of the coracoid were determined and the ROC was calculated for the coracoid undersurface, the intact glenoid as well as 20%, 35% and 50% anterior glenoid bone-loss scenarios. Intra and inter-rater statistics were calculated. Results. The mean length, width and thickness of the coracoid were: 16.8 mm, 15.0 mm, and 10.5 mm, respectively. The mean ROC values were: coracoid: 13.6 mm, intact glenoid: 13.8 mm, 20% anterior glenoid bone-loss: 27.6 mm, 35% bone-loss: 30.5 mm, and 50% bone-loss: 33.3 mm. The coracoid ROC was not significantly different from the intact glenoid (p=0.75), however, was significantly less (p<0.01) than all glenoid bone-loss scenarios. Intra- and inter-rater reliability was good/excellent. Conclusion. The congruent-arc Latarjet is truly congruent if the coracoid is fixated to an intact anterior glenoid rim. In glenoids with 20% or greater anterior bone-loss, the congruent-arc Latarjet is no longer congruent


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 85 - 85
1 Sep 2012
Alolabi B Gray A Ferreira LM Johnson JA Athwal GS King GJ
Full Access

Purpose. The coronoid and collateral ligaments are key elbow stabilizers. When repair of comminuted coronoid fractures is not possible, prosthetic replacement may restore elbow stability. A coronoid prosthesis has been designed with an extended tip in an effort to augment elbow stability in the setting of residual collateral ligament insufficiency. The purpose of this biomechanical study, therefore, was to compare an anatomic coronoid replacement with an extended tip implant both with and without ligament insufficiency. Method. Two coronoid prostheses were designed and developed based on CT-derived images adjusted for cartilage thickness: an anatomical implant and an extended-tip implant. Passive elbow extension was performed in 7 cadaveric arms in the varus and valgus positions. Varus-valgus laxity of the ulna relative to the humerus was quantified with a tracking system with an intact coronoid, a 40% coronoid deficiency, an anatomical prosthesis, and an extended prosthesis, with the collateral ligaments sectioned and repaired. Results. Laxity increased following a 40% coronoid deficiency with both repaired (p<0.01) and sectioned collateral ligaments (p<0.01). With the ligaments repaired, there was no significant difference in laxity between the intact coronoid, the anatomic implant or the extended implant (p=0.88). Ligament sectioning with an intact coronoid produced severe joint instability, resulting in an average laxity (standard error) of 42.94.4 (p<0.01). With ligament sectioning, the anatomic prosthesis produced no change in laxity compared to the intact coronoid (p=0.72), whereas the extended implant reduced laxity by 20.56.3 (p=0.05). Conclusion. A coronoid prosthesis with an extended coronoid tip improves elbow stability relative to an anatomic prosthesis in the setting of collateral ligament insufficiency. This may prove useful in patients with comminuted coronoid fractures with concomitant ligament injuries, allowing for maintenance of elbow stability during ligament healing or reconstruction. Clinical studies are needed to evaluate the feasibility of these designs and to determine patient outcomes


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 53 - 53
1 Dec 2013
Fabry C Woernle C Bader R
Full Access

Introduction:. The higher resisting torque against dislocation and the large range of motion due to the enlarged effective head diameter substantiate the use of eccentric dual-mobility cups in case of total hip joint instability [1,2]. As a result of force-dependent self-centering mechanism, an increased movement of the intermediate-component can be expected whose effect on wear propagation is unknown so far. Currently available hip joint simulators are only able to vary the load by the absolute value and not by the direction of resulting force. Therefore, the uniaxial force transmission may lead to a unique and stable alignment of the intermediate-component during testing. The purpose of this numerical study was to evaluate relative movements of the intermediate-component during daily life activities with respect to wear propagation. Method:. The numerical analysis was based on a standard dual-mobility system consisting of a polished metallic cup, a UHMWPE intermediate-component (40 mm outer diameter) with an eccentric offset of 2 mm and a 28 mm ceramic femoral head [Fig. 1]. The relative motion of the intermediate-component was affected by the geometrically generated self-centering torque (T. C. ) and the friction torque for inner (T. Fi. ) and outer (T. Fo. ) articulation around the centre of rotation Z. 1. [Fig. 2]. In order to consider lubrication conditions the lambda ratio was estimated for different daily life activities [3], including the calculation of composite roughness and minimum film thickness for a ball-on-plate configuration. The friction torque was related to the product of load (FRes), lever arm and the coefficients of friction which were determined using the equation proposed by [4]. Depending on load FRes and load orientation angle βthe equilibrium of moments around Z. 1. was established. Results:. Due to surface roughness and calculated minimum film thickness (0.1 to 0.62 μm), boundary lubrication was determined for both inner and outer articulation. The average coefficient of friction was 0.01825 for inner and 0.0751 for outer bearing. Torque patterns were obtained for different load orientation angles [Fig. 3]. In case of an angle β between 15° and 45° the friction torque dominated compared to the self-centering mechanism which resulted in a fixed intermediate-component position. Increasing the orientation angle β above 45° lead to a superiority of the self-centering effect as can be found for varus positions. Discussion:. In case of daily life activities the load vector FRes varies within the range of 30° in the frontal plane [3]. Therefore, the angle β ranges below 30° which leads to a fixed position of the intermediate-component. Consequently, the self-centering mechanism seems to have no negative influence on the wear propagation of dual-mobility cup systems. The presented numerical analysis permits a variation of implant-specific dimensions, but is limited to polyethylene wear couples


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 599 - 599
1 Dec 2013
Maruyama M Yoshida K Kitagawa K
Full Access

We reported a case of the acetabular depression fracture in conjunction with a central fracture dislocation of the hip that was treated with a unique surgical technique. CASE REPORT:. A 76-year-old man suffered a left acetabular fracture with severe left hip joint pain and walking disability. Acetabular fracture was not apparent on the initial radiographs including anteroposterior and oblique views of the pelvis. However, computed tomography (CT) scanning showed displaced acetabular depression fracture (a third fracture fragment) in the center of the weight-bearing area with fracture of the ilium and spontaneous reposition of central dislocation of the hip (Fig. 1, 2). It seemed that this fracture fragment created incongruity of the acetabular articular surface and the potential for hip joint instability. Therefore, the patient was treated with open reduction and internal fixation. SURGICAL TECHNIQUE:. To perform the procedure, the patient was placed in the lateral decubitus position. A direct lateral approach to the hip was used for exposure. The vastus lateralis was released 1 cm distal from its origin, trochanteric osteotomy was done by the Gigli saw. To observe the hip articular surface and to identify the fracture fragment, the femoral head was posterior dislocated with excision of teres ligamentum after T-shaped capsulotomy. The depressed fragment in the acetabulum was identified under direct vision but could not be reduced. Therefore, the outer cortex of the ilium was fenestrated in a size of 2 × 2 cm so that a 1-cm-wide levator was inserted to the depressed fragment at 2 cm proximal from the hip articular surface through the fenestrated window (Fig. 3). Subsequently, the displaced bone fragment was pushed down by using the levator to the adequate articular joint level. The fragment was stabilized with packed cancellous bone graft harvested from the osteotomized greater trochanter. The removed outer cortex of the ilium from fenestrated site was repositioned and fixed by a reconstruction plate and screws. The osteotomized greater trochanter was reattached and fixed with two cannulated cancellous hip screws. RESULTS:. At 9-month follow-up, he was pain-free and continued to function well without the use of external supports. The acetabular depression fracture was completely reduced and healed in the CT scanning evaluation. The patient had no signs of posttraumatic osteoarthritis in radiographs. DISCUSSION and CONCLUSION:. In acetabular fracture dislocations of the hip joint, the precise pathological anatomy is not easily demonstrated by routine radiographs with classification of acetabular fractures. In our case, however, details of acetabular fracture were not well visible on conventional radiographs. It has been shown that computed tomography is useful method in precise evaluation of the fracture type with bone damage and integrity of joint configuration. Concerning approach to the fracture fragment which existed in the center of the weight bearing area of acetabulum, we performed to fenestrate on the intact bony cortex of the ilium just proximal to the fracture site. It was convenient and useful to gain good reduction of the central acetabular depression fracture, although there was no report on such a ‘fenestration’ method


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 138 - 138
1 Dec 2013
Noble P Patel R Ashfaq K Bernstein D Ismaily S Incavo S
Full Access

Introduction. After TKR, excessive tension within the lateral retinaculum can lead to joint instability, component wear, stiffness and pain. The spatial distribution of strain in the lateral retinculum is unknown, both in the native knee and after TKR. In this study we measure the magnitude and distribution of mechanical strain in the lateral retinaculum with knee flexion, both in the native knee and after TKR. We hypothesize that: . 1. Strain in the lateral retinaculum will increase as a function of flexion. 2. Some regions of the lateral retinaculum experience greater strain than others. 3. TKR will affect the magnitude and location of strain during knee flexion. Materials and Methods. A fiduciary grid of approximately 40–70 markers was attached to the exposed lateral retinacula of five fresh frozen cadaveric knees in order to allow tracking of soft-tissue deformation. Each knee was flexed from 0–120° in a 6 degree-of-freedom custom activity simulator that physiologically loaded the knee during a squatting maneuver. During simulation, the displacement of each fiduciary point was measured using visible-light stereo-photogrammetry. The fiduciary grid divided into four distinct regions for strain analysis. Using the grid of the native knee in full extension as the initial state, the average principal strain in each region was calculated as a function of flexion. Measurements were repeated after TKR was performed using a contemporary implant system. Results. In the native knee, average retinacular strain increased dramatically with knee flexion (30°: 12% vs 120°: 25%; p = 0.007). The greatest strain was observed in the supero-lateral region in high flexion (34% at 120°). No significant change in strain with flexion was seen in the infero-medial region bordering the patellar ligament (10% at 30° to 15% at 120°; p > 0.05). After TKR, retinacular strains increased by an average of 13% in extension when compared to the native knee. In flexion, strains decreased following arthroplasty by an average of 4% at 30° and 6% at all other angles. The largest strains were observed in the supero-lateral region and were comparable to strain observed in the native knee (34% at 120°). The greatest decrease in strain after TKR was observed in the supero-medial region (26% vs 16% at 90°). Conclusions. In the native knee, average lateral retinacular strains are greatest mid- to high-flexion as the retinaculum tightens to constrain patellar motion. The superior regions of the retinaculum, where the iliotibial band-patellar fibers are located, experience the most strain, especially in higher flexion. After TKR, strain in the supero-medial region decreases while strain in the supero-lateral region remains comparable to the native knee, suggesting the geometry of the native knee along


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 119 - 119
1 May 2012
G. M C. R K. B P. P
Full Access

Background. Unicompartmental knee arthroplasty provides a good alternative to total knee arthroplasty in patients with isolated medial compartment osteoarthritis. Reported ten-year survival for the Oxford medial unicompartmental knee arthroplasty is variable, ranging from 80.2% to 97.7% in the originator series. The aim of this study was to determine the survival and reasons for revision of the Oxford medial unicompartmental knee arthroplasty when performed at a specialist orthopaedic centre. Methods. Details of consecutive patients undergoing Oxford unicompartmental knee arthroplasty at our centre between January 2000 and December 2009 were collected prospectively. Failure of the implant was defined as conversion to total knee arthroplasty. Survival was determined using the Kaplan-Meier method. Results. There were 494 Oxford unicompartmental knee arthroplasties implanted in 425 patients for isolated medial compartment osteoarthritis. Mean age was 62.8 yrs (range 34.6-90.1 yrs) and 53.4% were female. During a mean follow-up time of 3.0 yrs (range 0.5-9.2 yrs), twenty-two knees (4.5%) were revised to a total knee arthroplasty. Reasons for revision were aseptic loosening of the femoral (n=8) or tibial component (n=2), undiagnosed pain (n=5), patellofemoral pain (n=2), infection (n=1), lateral meniscus tear (n=1), periprosthetic fracture (n=1), joint instability (n=1), and dislocation of meniscal bearing (n=1). Mean time to revision surgery from the primary procedure was 3.0 yrs. Eight-year survival for the cohort was 87.4%. The median pre-operative Oxford knee score was 62.5% which reduced to 27.7% at four years post-operatively. Conclusion. This study has demonstrated our revision rate for the Oxford unicompartmental knee replacement is comparable to independent series and national registry data. Post-operative function in patients not revised was good. The commonest reason for failure was aseptic component loosening which usually occurred within two to four years. Extended follow-up may therefore be beneficial in these patients so these cases are identified early and subsequently revised