Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 69 - 69
1 Jan 2017
Parchi P Andreani L Cutolo F Carbone M Ferrari V Ferrari M Lisanti M
Full Access

Aim of the study was the evaluation of the efficacy of the use of a new wearable AR video see-throught system based on Head Mounted Displays (HMDs) to guide the position of a working cannula into the vertebral body through a transpedicular approach without the use X-Ray images guidance. We describe a head mounted stereoscopic video see-through display that allows the augmentation of video frames acquired by two cameras with the rendering of patient specific 3D models obtained on the basis of pre-operative radiological volumetric images. The system does not employ any external tracker to detect movements of the user or of the patient. User's head movements and the consistent alignment of the virtual patient with the real one, are accomplished through machine vision methods applied on pairs of live images. Our system has been tested on an experimental setup that simulate the reaching of lumbar pedicle as in a vertebral augmentation procedure avoiding the employment of ionizing radiation. Aim of the study is to evaluate the ergonomics and the accurancy of the systems to guide the procedure. We performed 4 test sessions with a total of 32 kirschner wire implanted by a single operator wearing the HMD with the AR guide. The system accurancy was evaluated by a post-operative CT scan. The most ergonomic AR visualization comprise the use of a pair of virtual viewfinders (one at the level of the skin entry point and one at the level of the trocar's bottom) aligned according to the planned direction of the trocar insertion. With such AR guide the surgeon must align the tip of the needle to the center of the first viewfinder placed on the patient's skin. indeed the viewfinder barycenter provides a 2 degrees of freedom (DoFs) positioning guide corresponding to the point of insertion preoperatively planned over the external surface of the model. The second viewfinder is used by the surgeon to rotate and align the trocar according to the planned direction of insertion (2 rotational DOFs). After the first test series a clamping arm has been introduced to maintain the reached trocar's trajectory. The post-operative CT scan was registered to the preoperative one and the trajectories obtained with the AR guide were compared to the planned one. The overal results obtained in the 4 test session show a medium error of 1.18+/−0.16 mm. In the last year there was a growing interest to the use of Augmented Reality systems in which the real scene watched by the surgeon is merged with virtual informations extracted from the patient's medical dataset (medical data, patient anatomy, preoperative plannig). Wearable Augmented Reality (WAR) with the use of HDMs allows the surgeon to have a “natural point of view” of the surgical field and of the patient's anatomy avoiding the problems related to eye-hand coordination. Results of the in vitro tests are encouraging in terms of precision, system usability and ergonomics proving our system to be worthy of more extensive tests


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 107 - 107
1 Jan 2017
Girolami M Brodano GB Babbi L Cenacchi A Gasbarrini A Bandiera S Terzi S Ghermandi R Boriani S
Full Access

The nature of the Aneurysmal Bone Cyst (ABC) is still controversial among benign tumor, often identifiable in the “aggressive” form (Enneking stage 3) or pseudotumoral lesion. It is well known instead the very high risk of intraoperative bleeding, indicating a strongly unfavorable relationship between the surgical morbidity and the nature of the disease. Recently, excellent results have been obtained in the treatment of ABC by repeated arterial embolizations (SAE), without any surgery, while initial experiences with administration of denosumab and doxycycline are still under study. This study presents the results of our initial experience in the treatment of vertebral ABC through the use of concentrated autologous mesenchymal stem cells (MSCs). Two teenagers aged 15 years, male, and 14 years, female, came to our attention both with diagnosis of ABC in C2 vertebra which was histologically confirmed. They were both neurologically intact, the girl complained of neck pain. The arteriography showed in both cases close relationships between the pathological ABC vascularization and the vertebral and cervical ascending arteries, making treatment by selective arterial embolization unsuitable. After discussion with the parents of patients, we jointly decided to undertake the treatment by direct injection of MSCs preceded, in the same operative session, by harvesting from the iliac crest of 60 cc of bone marrow (by needle aspiration) and its separation with the use of concentration system Res-Q ™ 60 BMC. In the second case the treatment was repeated two times at distance of 4 months. The clinical and radiological follow-up is to of 30 months from the first treatment in both cases. In the first case the presence of newly formed bone within the ABC appeared as a clear sign of recovery just a month after the first treatment and increased gradually, until the cyst appeared completely ossified one year after the treatment, with associated disappearance of the pain. In the second case an initial sclerotic peripheral margin appeared after the second treatment and later ossification progressed, concurrently with the disappearance of the pain. Treatment with selective serial arterial embolization is considered effective in the treatment of ABC even if not without risks, mainly related to the frequent and repeated exposure to ionizing radiation. Furthermore, in a certain percentage of cases the procedure is not technically executable, especially for the presence of arteries afferent to the medullar vascularization. Inconsistent results were obtained with other procedures: the injection of calcitonin, steroid, alcoholic solutions, or the use of sclerosing substances. Radiation therapy, though very effective, it is not considered the first choice. Recently, promising results have been achieved by the injection of mononuclear cells derived from bone marrow in the treatment of Aneurysmal Bone Cyst. Based on the early results obtained in the two cases described, the injection of MSCs can be considered a valid alternative in the treatment of vertebral ABCs untreatable by embolization


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 110 - 110
1 Jan 2017
Lin C Lu T Zhang S Hsu C Frahm J Shih T
Full Access

Non-invasive, in vivo measurement of the three-dimensional (3-D) motion of the tibiofemoral joint is essential for the study of the biomechanics and functional assessment of the knee. Real-time magnetic resonance imaging (MRI) techniques enable the measurement of dynamic motions of the knee with satisfactory image quality and free of radiation exposures but are limited to planar motions in selected slice(s). The aims of the current study were to propose a slice-to-volume registration (SVR) method in conjunction with dual-slice, real-time MRI for measuring 3-D tibiofemoral motion; and to evaluate its repeatability during passive knee flexion. Eight healthy young adults participated in the current study, giving informed written consent as approved by the Institutional Research Board. A 3-T MRI system (Verio, Siemens, Erlangen, Germany) incorporated with a neck matrix coil was used to collect the MRI data. A 3-D scanning using the VIBE sequence was used to collect the volumetric data of the knee at fully extended position (TR = 4.64 ms, TE = 2.3 ms, flip angle = 15°, in-plane resolution = 0.39 × 0.39 mm. 2. and slice thickness = 0.8 mm). A real-time MRI using the refocused radial FLASH sequence (TR = 4.3 ms, TE = 2.3 ms, flip angle = 20°, in-plane resolution = 1.0 × 1.0 mm. 2. , slice thickness = 6 mm) was used to acquire a pair of image slices of the knee at a frame rate of 3 fps during passive flexion. The volumetric MRI data sets were segmented for the femur and tibia/fibula to isolate the sub-volumes containing bone segments. A slice-to-volume registration method was then performed to determine the 3-D poses of the bones based on the spatial matching between sub-volume of the bones and the real-time image slices. The bone poses for all frames were used to calculate the rigid-body kinematics of the tibiofemoral joint in terms of the flexion/extension (FE), internal/external rotation (IR/ER), abduction/adduction (Abd/Add) and joint center translations along three anatomical axis of the tibia. The procedures were carried out five times for repeatability analysis. The standard deviation (SD) of the rigid-body kinematics for each frame from the five trials were calculated and then averaged across all frames to give quantitative measures of the repeatability of the kinematic variables. The repeatability analysis showed that the mean±SD of the averaged SD in FE, Abd/Add and IR/ER components across all subjects were 0.25±0.09, 0.46±0.13 and 0.77±0.16 degrees, respectively. The corresponding values for the joint translations in anterior/posterior, proximal/distal and medial/lateral directions were 0.21±0.04, 0.11±0.03 and 0.43±0.09 mm. An SVR method in conjunction with dual-slice real-time MRI has been successfully developed and its repeatability in measuring 3-D motion of the tibiofemoral joint evaluated. The results show that the proposed method is capable of providing rigid-body kinematics with sub-millimeter and sub-degree precision (repeatability). The proposed SVR method using real-time MRI will be a valuable tool for non-invasive, functional assessment of the knee without involving ionizing radiation, and may be further developed for joint stability assessment


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 17 - 17
1 Jul 2014
Nasto L Wang D Rasile Robinson A Ngo K Pola E Sowa G Robbins P Kang J Niedernhofer L Vo N
Full Access

Summary Statement. DNA damage induced by systemic drugs or local γ-irradiation drives disc degeneration and DNA repair ability is extremely important to help prevent bad effects of genotoxins (DNA damage inducing agents) on disc. Introduction. DNA damage (genotoxic stress) and deficiency of intracellular DNA repair mechanisms strongly contribute to biological aging. Moreover, aging is a primary risk factor for loss of disc matrix proteoglycan (PG) and intervertebral disc degeneration (IDD). Indeed, our previous evidences in DNA repair deficient Ercc1−/Δ mouse model strongly suggest that systemic aging and IDD correlate with nuclear DNA damage. Thus the aim of the current study was to test whether systemic or local (spine) genotoxic stress can induce disc degeneration and how DNA repair ability could help prevent negative effects of DNA damage on IDD. To test this hypothesis a total of twelve Ercc1−/Δ mice (DNA repair deficient) and twelve wild-type mice (DNA repair competent) were challenged with two separate genotoxins to induce DNA damage, i.e. chemotherapeutic crosslinking agent mechlorethamine (MEC) and whole-body gamma irradiation. Local effects of gamma irradiation were also tested in six wild-type mice. Methods. Ercc1. −/Δ. mice (n=6) and their wild-type littermates were chronically exposed to genotoxic stress beginning at 8 wks of age by subcutaneous administration of a subtoxic dose of MEC (8 μg/kg once per week for 6 weeks). Similarly, six Ercc1. −/Δ. mice and their wild-type littermates were exposed to genotoxic stress by whole-body administration of ∼10% radiotherapeutic dose of ionizing radiation (0.5 Gy 1x per week for 10 weeks). A third set of wild-type mice (n=6) were exposed to one shot local spine irradiation at 0, 6, and 10 Gy at 22 weeks old and sacrificed 10 weeks later. Histological staining for proteoglycan (Safranin O) and collagen (Masson's Trichrome), PG synthesis (. 35. S-sulfate incorporation) and GAG content (DMMB assay), disc ADAMTS4, aggrecan and its fragments terminating in NITEGE-. 373. (immunohistochemistry (IHC)) were analyzed. Cellular senescence markers (p16) and apoptosis (TUNEL assay) were also measured. Results. Histological staining revealed substantial reduction in matrix collagen, proteoglycan, and endplate cellularity in the discs of MEC-exposed and irradiated mice. IHC analysis showed decreased aggrecan and increased levels of ADAMTS4 and NITEGE-. 373. containing aggrecan proteolytic fragments. Disc PG synthesis was reduced 2–3 folds in MEC-treated mice and irradiated mice. Locally irradiated mice showed similar effects on disc matrix. Expression of p16 as well as apoptosis significantly increased in MEC-treated and irradiated mice. The overall effect of the treatments on disc matrix and endplate cartilage was more severe in Ercc1−/Δ mice than wild-type mice. Discussion/Conclusion. MEC and IR treatment resulted in loss of disc matrix proteoglycan and collagen in adult wild-type and Ercc1−/Δ mice. The finding that loss of matrix proteoglycan was greater in the DNA repair deficient mice strongly supports the conclusion that DNA damage can drive disc degeneration and DNA repair ability is extremely important to help prevent these effects. Results of this work suggest that patients treated with genotoxic drugs (i.e. long-term cancer survivors) may be at increased risk of IDD


Bone & Joint 360
Vol. 7, Issue 1 | Pages 38 - 39
1 Feb 2018
Das A