Advertisement for orthosearch.org.uk
Results 1 - 20 of 22
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 142 - 142
1 May 2012
D. C J. P D. S
Full Access

The management of discogenic pain continues to be controversial. The results for operative and non-operative management are variable. This study aims to look at the results of interbody fusion versus dynamic stabilisation in patients with discogenic pain. Diagnosis was made by use of MRI and provocative discography. All patients had pre-operative Visual Analogue Scores and Oswestry Disability Index scores. Patients were then assessed in the post-operative period at 6 months, 1 year and 2 years. Case matched series with 19 patients in each group with a mean follow-up of 24 months. In comparison of both techniques there were no statistically significant differences but the dynamic stabilisation group had improved outcomes with both measures. The results did raise some further issues, as several patients in each group were either worse or had no significant improvement following surgery. In conclusion this paper raises concerns regarding the use of surgery for patients with discogenic pain. If surgery is however considered, dynamic stabilisation is a valid alternative to interbody fusion


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 207 - 207
1 Sep 2012
Kukkar N Beck RT Mai MC Froelich JM Milbrandt JC Freitag P
Full Access

Purpose. A change in lumbar lordosis can affect the outcome following lumbar fusion, and intraoperative positioning is a prime determinant of the postoperative lordosis. The purpose of this study is to determine the change in lordosis and sacral slope (SS) following axial lumbar interbody fusion (AxiaLIF). Method. We retrospectively reviewed 81 patients who underwent a 360 lumbar interbody fusion at L4-5/L5-S1 (two-level procedure) or solely at L5-S1 (one-level) for degenerative disc disease and spondylolithesis utilizing the AxiaLIF with posterior segmental instrumentation. For the two-level procedures, 25 patients had the AxiaLIF placed first and 27 had pedicle screws placed first. For the one-level procedures, 11 patients had the AxiaLIF placed first and 18 had pedicle screws placed first. Standing lateral preoperative radiographs were compared to standing lateral postoperative films. Lumbar Cobb angles were measured at L1-S1, L4-S1 and individual lumbar levels. SS was measured for sacral version. Results. Of the 81 patients studied, 29 underwent one-level AxiaLIF, and 52 underwent two-level AxiaLIF. For the two-level population, there were statistically significant changes (P less than 0.05) in Cobb angles pre- vs. postoperative at the L4-S1, L2-3, and L4-5 levels, but none other. The percent lordosis from L4-S1 pre- vs. postoperative was also noted to be significant. The pre- vs. postoperative Cobb angle comparisons for the one-level population were not found to be significant. The percentages having a greater than or equal to 10 degree change in total lordosis and lordosis from L4-S1 in both one- and two-level groups were similar at ∼20%. There was no difference in either group in percentage having a greater than or equal to five degree change at individual lumbar segments although there was a trend at both L5-S1 and the SS towards less change with the pedicle screws placed first. Conclusion. A significant portion of both single and multilevel fusions with AxiaLIF had a statistically significant change at the L4-5 and L4-S1 levels. In general, there is a small decrease in lordosis at the bottom two segments and SS with reciprocal changes at the proximal levels. The percentage of total lordosis from the L4-S1 level decreased significantly in the multilevel group. Roussouly lordosis type three (well-balanced) was relatively protected from change in lordosis. Placing pedicle screws prior to placing the AxiaLIF in one- and two- level procedures may lead to an improved sagittal alignment. Further observation of this cohort will determine if the change in alignment will impact outcomes or accelerate adjacent level disease


Obesity is an increasing public health concern associated with increased perioperative complications and expense in lumbar spine fusions. While open and mini-open fusions such as transforaminal lumbar interbody fusion (TLIF) and minimally invasive TLIF (MIS-TLIF) are more challenging in obese patients, new MIS procedures like oblique lateral lumbar interbody fusion (OLLIF) may improve perioperative outcomes in obese patients relative to TLIF and MIS-TLIF. The purpose of this study is to determine the effects of obesity on perioperative outcomes in OLLIF, MIS-TLIF, and TLIF. This is a retrospective cohort study. We included patients who underwent OLLIF, MIS-TLIF, or TLIF on three or fewer spinal levels at a single Minnesota hospital after conservative therapy had failed. Indications included in this study were degenerative disc disease, spondylolisthesis, spondylosis, herniation, stenosis, and scoliosis. We measured demographic information, body mass index (BMI), surgery time, blood loss, and hospital stay. We performed summary statistics to compare perioperative outcomes in MIS-TLIF, OLLIF, and TLIF. We performed multivariate regression to determine the effects of BMI on perioperative outcomes controlling for demographics and number of levels on which surgeries were operated. OLLIF significantly reduces surgery time, blood loss, and hospital stay compared to MIS-TLIF, and TLIF for all levels. MIS-TLIF and TLIF do not differ significantly except for a slight reduction in hospital stay for two-level procedures. On multivariate analysis, a one-point increase in BMI increased surgery time by 0.56 ± 0.47 minutes (p = 0.24) in the OLLIF group, by 2.8 ± 1.43 minutes (p = 0.06) in the MIS-TLIF group, and by 1.7 ± 0.43 minutes (p < 0.001) in the TLIF group. BMI has positive effects on blood loss for TLIF (p < 0.001) but not for OLLIF (p = 0.68) or MIS-TLIF (p = 0.67). BMI does not have significant effects on length of hospital stay for any procedure. Obesity is associated with increased surgery time and blood loss in TLIF and with increased surgery time in MIS-TLIF. Increased surgery time may be associated with increased perioperative complications and cost. In OLLIF, BMI does not affect perioperative outcomes. Therefore, OLLIF may reduce the disparity in outcomes and cost between obese and non-obese patients


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 125 - 125
1 Mar 2017
Zhou C Sethi K Willing R
Full Access

Transforaminal lumbar interbody fusion (TLIF) using an implanted cage is the gold standard surgical treatment for disc diseases such as disc collapse and spinal cord compression, when more conservative medical therapy fails. Titanium (Ti) alloys are widely used implant materials due to their superior biocompatibility and corrosion resistance. A new Ti-6Al-4V TLIF cage concept featuring an I-beam cross-section was recently proposed, with the intent to allow bone graft to be introduced secondary to cage implantation. In designing this cage, we desire a clear pathway for bone graft to be injected into the implant, and perfused into the surrounding intervertebral space as much as possible. Therefore, we have employed shape optimization to maximize this pathway, subject to maintaining stresses below the thresholds for fatigue or yielding. The TLIF I-beam cage (Fig. 1(a)) with an irregular shape was parametrically designed considering a lumbar lordotic angle of 10°, and an insertion angle of 45° through the left or right Kambin's triangles with respect to the sagittal plane. The overall cage dimensions of 30 mm in length, 11 mm in width and 13 mm in height were chosen based on the dimensions of other commercially available cages. The lengths (la, lp) and widths (wa, wp) of the anterior and posterior beams determine the sizes of the cage's middle and posterior windows for bone graft injection and perfusion, so they were considered as the design variables for shape optimization. Five dynamic tests (extension/flexion bending, lateral bending, torsion, compression and shear compression, as shown in Fig. 2(b)) for assessing long term cage durability (10. 7. cycles), as described in ASTM F2077, were simulated in ANSYS 15.0. The multiaxial stress state in the cage was converted to an equivalent uniaxial stress state using the Manson-Mcknight approach, in order to test the cage based on uniaxial fatigue testing data of Ti-6Al-4V. A fatigue factor (K) and a critical stress (σcr) was introduced by slightly modifying Goodman's equation and von Mises yield criterion, such that a cage design within the safety design region on a Haigh diagram (Fig. 2) must satisfy K ≤ 1 and σcr ≤ SY = 875 MPa (Ti-6Al-4V yield strength) simultaneously. After shape optimization, a final design with la = 2.30 mm, lp = 4.33 mm, wa = 1.20 mm, wp = 2.50 mm, was converged upon, which maximized the sizes of the cage's windows, as well as satisfying the fatigue and yield strength requirements. In terms of the strength of the optimal cage design, the fatigue factor (K) under dynamic torsion approaches 1 and the critical stress (σcr) under dynamic lateral bending approaches the yield strength (SY = 875 MPa), indicating that these two loading scenarios are the most dangerous (Table 1). Future work should further validate whether or not the resulting cage design has reached the true global optimum in the feasible design space. Experimental validation of the candidate TLIF I-beam cage design will be a future focus. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 115 - 115
1 Feb 2020
Tran N Nuño N Reimeringer M
Full Access

Background. It is known that severe cases of intervertebral disc (IVD) disease may lead to the loss of natural intervertebral height, which can cause radiating pain throughout the lower back and legs. To this point, surgeons perform lumbar fusion using interbody cages, posterior instrumentation and bone graft to fuse adjacent vertebrae together, thus restoring the intervertebral height and alleviating the pain. However, this surgical procedure greatly decreases the range of motion (ROM) of the treated segment, mainly caused by high cage stiffness. Additive manufacturing can be an interesting tool to reduce the cage's elastic modulus (E), by adding porosity (P) in its design. A porous cage may lead to an improved osteointegration since there is more volume in which bone can grow. This work aims to develop a finite element model (FEM) of the L4-L5 functional spinal unit (FSU) and investigate the loss of ROM induced by solid and porous cages. Materials and Methods. The Intact-FEM of L4-L5 was created, which considered the vertebrae, IVD and ligaments with their respective material properties. 1. The model was validated by comparing its ROM with that of other studies. Moments of 10 Nm were applied on top of L4 while the bottom of L5 was fixed to simulate flexion, extension, lateral bending and axial rotation. 2. The lumbar cages, posterior instrumentation and bone graft were then modelled to create the Cage-FEMs. Titanium was chosen for the instrumentation and cages. Cages with different stiffness were considered to represent porous structures. The solid cage had the highest modulus (E. 0. =110 GPa, P. 0. =0%) whereas the porous cages were simulated by lowering the modulus (E. 1. =32.8 GPa, P. 1. =55%; E. 2. =13.9 GPa, P. 2. =76%; E. 3. =5.52 GPa, P. 3. =89%; E. 4. =0.604 GPa, P. 4. =98%), following the literature. 3. The IVD was removed in Cage-FEMs to allow the implant's insertion [Fig. 1] and the previous loading scenarios were simulated to assess the effects of cage porosity on ROM. Results. The Intact-FEM presents acceptable ROM according to experimental and numerical studies, as shown by the red line in Figure 2. After insertion, lower ROM values in Cage-FEMs are measured for each physiological movement [Fig. 3]. In addition, highly porous cages have greater ROM, especially in axial rotation. Discussion. Significant reduction of ROM is expected after cage insertion because the main goal of interbody fusion is to allow bone growth. As such, the procedure's success is highly dependent on segmental stability, which is achieved by using cages in combination with bone graft and posterior instrumentation. Furthermore, higher cage porosities seem to affect the FSU. In fact, ROM increases more as the cage modulus approaches that of the cancellous bone (E. canc-bone. =0.2 GPa. 1. ). Next step will be to assess the effects of cage design on the L4-L5 FSU mechanical behavior and stress distribution. To conclude, additive manufacturing offers promising possibilities regarding implant optimization, being able to create porous cages, thus reducing their stiffness. For any figures or tables, please contact the authors directly


Study design. Prospective randomized study. Objective. Primary aim of this study was to compare clinical and radiological results of transforaminal lumbar interbody fusion (TLIF) with posterolateral (interlaminar) instrumented lumbar fusion (PLF) in adult low grade (Meyerding 1 & 2) spondylolisthesis patients. Background data. Theoretically, TLIF has better radiological result than PLF in spondylolisthesis in most of the studies. Method. 24 patients of low grade adult spondylolisthesis were randomly allocated to one of the two groups: group 1- PLF and group 2-TLIF. Study period was between August 2010 to March 2013. All patients were operated by a single surgeon (CN). Posterior decompression was performed in all patients. Average follow up period was 18.4 months. Quality of life was accessed with Visual analogue scale and Oswestry Low Back Pain Disability Index. Fusion was assessed radiologically by CT scan and X-ray. Result. Though fusion was significantly better in TLIF group, clinical outcome including relief of back pain and neurogenic claudication were better in PLF group. Rate of complication was also lower in PLF group. Conclusion. Considering the low complication rate and similar or better clinical results, posterolateral instrumented lumbar fusion is the better option in low grade adult spondylolisthesis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 141 - 141
1 Jun 2012
Marzona L Sancin A
Full Access

Nowadays many new minimally invasive techniques are experienced to perform lower lumbar interbody fusion in attempt to decrease the complications related to open anterior approach. AxiaLIF (axial lumbar interbody fusion) system is a percutaneous transacral approach that exploits the virtual presacral retroperitoneal space to perform annulus-sparing discectomy and interbody instrumented fusion of lower lumbar disc spaces. Additioning posterior percutaneous instrumentation, a robust axial construct is placed which restores disc height, sagittal balance and lordosis with minimal muscle dissection, blood loss and postoperative pain. Via fluoroscopically-guided approach, AxiaLIF procedure creates a presacral retroperitoneal corridor in the midline through a paracoccigeal skin incision of 2-3 cm. This space is void of neuro-vascular major elements. A safe working cannula is put in and docked in the S1-S1 entry level and a transacral channel is realized gaining the central space of the disc. A 360° annulus-sparing radial discectomy is performed with special cutters even in case of collapsed disc space and the bone graft is inserted. The following screwing of AxiaLIF rod restores disc height via distraction if necessary, decompresses the neural foramen indirectly and undertakes instantaneous rigid fixation of adjacent vertebral bodies. Using the same incision point and trajectory through the presacral space as AxiaLIF, it is possible to realized a similar procedure L4-S1 vertebral fusions called AxiaLIF 2L. Between february 2009 and may 2010 25 patients (16F:9M) affected by degenerative disc disease (17) and grade 1 or 2 spondylolisthesis (8) were included in this study. Evaluated outcomes were the amount of bleeding, the presence of presacral hematoma, the functional recovery time, the surgery time rate, the x-ray time rate, the complication rate (infection, pelvic visceral injury, postoperative pain). 21 of 25 patients underwent AxiaLIF L5-S1 procedures, 4 of these with a stand alone implant and 17 followed by posterior instrumentation. In the remaining 4 patients, a AxiaLIF 2L L4-S1 procedures is performed. 4 of 25 patients had a perioperative suction drenage. Mean operative time for L5-S1 AxiaLIF procedure was 49 minutes. A 2. nd. p.o.d. CT pelvic scan of undrained and drained groups showed a mean presacral hematoma of 45 cc and 17 cc respectively reduced one month later to a mean value of 19 cc and 3 cc. Hemoglobin rate mainly reduced of 1,7 g/dL between pre and postoperative time. At one month all patients improved their quality of life significantly but one had a gluteal pain. No patient had perioperative infections or pelvic visceral injuries or required blood transfusions. This study seems to assess that AxiaLIF procedure is a minimally invasive lower spine techique actually. The presacral hematoma presence seems to have no side effect and it may be prevented by perioperative drainage. More large studies are needed to confirm our results


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_3 | Pages 21 - 21
1 Apr 2019
Sharma A Singh V
Full Access

Introduction

Aim was to compare the functional outcome of anterior cervical decompression and fusion (ACDF) with stand-alone tricotical iliac crest auto graft verses stand-alone PEEK cage.

Material and methods

Prospectively collected data of 60 patients in each group was compared.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_3 | Pages 10 - 10
1 Apr 2019
Sharma A Singh V Singh V
Full Access

Introduction

Aim was to compare the functional outcome of anterior cervical decompression and fusion (ACDF) with stand-alone tricotical iliac crest auto graft verses stand-alone PEEK cage.

Material and methods

Prospectively collected data of 60 patients in each group was compared.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 65 - 65
1 Sep 2012
Carstens A Adam C Izatt M Labrom R Askin G
Full Access

The relationship between radiologic union and clinical outcome in thoracoscopic scoliosis surgery is not clear, as apparent non-union does not always correspond to a poor clinical result. Our aim was to evaluate CT fusion rates 2yrs after thoracoscopic surgery, and explore the relationship between fusion scores and; (i) rod diameter, (ii) graft type, (iii) fusion level, (iv) implant failure, and (v) lateral position in disc space.

Between 2000 and 2006 a cohort of 44 patients had thoracoscopic scoliosis correction. Discectomies were performed and defect was packed with either autograft (n=14) or allograft (n=30). Instrumentation consisted of either 4.5mm (n=24) or 5.5mm (n=20) single titanium anterior rod and vertebral body screws. Fusion quality and implant integrity were evaluated 2yr following surgery using low-dose CT. At each disc space, left, right and mid-sagittal CT reconstructions were generated and graded using the Sucato 4-point scale (Sucato, 2004) which is based on calculated percentage of fusion across disc space.

Fusion scores were measured for 259 disc spaces in 44 patients. Rod diameter had a strong effect on fusion score, with a mean score of 2.12±0.74 for 4.5mm Ti rod, decreasing to 1.41+0.55 for 5.5mm Ti rod, and to 1.09+0.36 for 5.5mm Ti-alloy rod. Mean fusion scores for autograft and allograft subgroups were 2.13±0.72 and 2.14±0.74 respectively. Fusion scores were highest in the middle of implant construct, dropping off by 20–30% toward the ends. Fusion scores adjacent to the rod (2.19±0.72) were significantly higher than on the contralateral side of the disc (1.24±0.85). Levels where rod fracture occurred (n=11) had lower fusion scores than those without fracture (1.09±0.67 vs 1.76±0.80). Levels where top screw pullout occurred (n=6) had lower CT fusion scores than those without (1.25±0.60 vs 1.83±0.76).

Rod diameter (larger), intervertebral level (proximal or distal), lateral position in disc (further from rod) and rod fracture or screw pullout all reduce fusion scores, while graft type does not affect scores. The assumed link between higher fusion score and better clinical outcome must be treated with caution, because rod fractures did not necessarily occur in patients with lower fusion scores. It is possible that with a stiffer rod, less bony fusion mass is required for a stable construct. We propose that moderate fusion scores secure successful clinical outcomes in thoracoscopic scoliosis surgery.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 99 - 99
23 Feb 2023
Woodfield T Shum J Linkhorn W Gadomski B Puttlitz C McGilvray K Seim H Nelson B Easley J Hooper G
Full Access

Polyetheretherketone (PEEK) interbody fusion cages combined with autologous bone graft is the current clinical gold standard treatment for spinal fusion, however, bone graft harvest increases surgical time, risk of infection and chronic pain. We describe novel low-stiffness 3D Printed titanium interbody cages without autologous bone graft and assessed their biological performance in a pre-clinical in vivo interbody fusion model in comparison to the gold standard, PEEK with graft. Titanium interbody spacers were 3D Printed with a microporous (Ti1: <1000μm) and macroporous (Ti2: >1000μm) design. Both Ti1 and Ti2 had an identical elastic modulus (stiffness), and were similar to the elastic modulus of PEEK. Interbody fusion was performed on L2-L3 and L4-L5 vertebral levels in 24 skeletally mature sheep using Ti1 or Ti2 spacers, or a PEEK spacer filled with iliac crest autograft, and assessed at 8 and 16 weeks. We quantitatively assessed bone fusion, bone area, mineral apposition rate and bone formation rate. Functional spinal units were biomechanically tested to analyse range of motion, neutral zone, and stiffness. Results: Bone formation in macroporous Ti2 was significantly greater than microporous Ti1 treatments (p=.006). Fusion scores for Ti2 and PEEK demonstrated greater rates of bone formation from 8 to 16 weeks, with bridging rates of 100% for Ti2 at 16 weeks compared to just 88% for PEEK and 50% for Ti1. Biomechanical outcomes significantly improved at 16 versus 8 weeks, with no significant differences between Ti and PEEK with graft. This study demonstrated that macroporous 3D Printed Ti spacers are able to achieve fixation and arthrodesis with complete bone fusion by 16 weeks without the need for bone graft. These significant data indicate that low-modulus 3D Printed titanium interbody cages have similar performance to autograft-filled PEEK, and could be reliably used in spinal fusion avoiding the complications of bone graft harvesting


Instrumented fusion for lumbar degenerative spondylolisthesis (LDS) has been challenged recently with high impact trials demonstrating similar changes in health-related quality of life (HRQOL) and less morbidity/cost with laminectomy alone. Randomized trials often fail, however, to evaluate a heterogeneous population of patients. A standardized clinical assessment and management plan (SCAMP) was created as a decision aid for surgeons based on the radiographic stability and clinical presentation of patients. The purpose of this study was to compare outcomes of those patients who followed the decision aid with respect to fusion/no fusion to those who did not. Patients were prospectively enrolled from eleven different Canadian institutions and followed from 2015–2019. A degenerative spondylolisthesis instability classification system (DSIC) was created using best available evidence stratifying patients into three different subtypes (1. stable degenerative spondylolisthesis, 2. potentially unstable spondylolisthesis and 3. unstable spondylolisthesis). The decision aid recommends laminectomy alone for group 1 patients, posterolateral fusion with pedicle screws in type 2 patients and pedicle screw and interbody fusion for type 3 patients. One year changes in HRQOL, length of hospital stay (LOS), medication use and surgical time were compared between each group and in context of whether the treatment fell within the decision aid recommendation. Statistics were performed with STATA software. There were 394 patients initially enrolled and 334 (84.8%) with full one year data available for comparison. There were 95 type 1 (stable), 224 type 2 (potentially unstable) and 75 type 3 (unstable) patients initially classified. Baseline Ostwestry disability index (ODI), EQ-5D, and SF-12 MCS scores were significantly worse for type 3 patients versus type 1 patients. One hundred and eight patients were treated within the recommendations of the DSIC system (108/334, 32.3%). Surgeons performed interbody fusions in 141 patients (42%) rather than follow DSIC recommending a less invasive approach. There were no significant differences EQ-5D, SF-12 PCS/MCS, PHQ-9 or ODI at one year between patient groups. There was a trend towards shorter operating times for those patients following the DSIC system (195 minutes non-followers versus 180 followers, p=0.078) and reduced hospital stay (4.46 days non-followers versus 3.98 followers, p=0.065). There were no significant clinical differences in outcome at 1 year whether patients underwent decompression alone, decompression/posterolateral fusion or interbody fusion regardless of the stability classification. Surgeons were more likely to perform potentially unnecessary interbody fusions even in those patients with stable or potentially unstable spondylolisthesis. Although not statistically significant, there is some suggestion that following the DSIC system based on best evidence recommendations leads to more judicious/responsible use of hospital resources. Further study is required to determine why surgeons are more likely to choose more invasive, higher rigidity constructs in patients with LDS


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 47 - 47
1 Dec 2022
Cherry A Eseonu K Ahn H
Full Access

Lumbar fusion surgery is an established procedure for the treatment of several spinal pathologies. Despite numerous techniques and existing devices, common surgical trends in lumbar fusion surgery are scarcely investigated. The purpose of this Canada-based study was to provide a descriptive portrait of current surgeons’ practice and implant preferences in lumbar fusion surgery while comparing findings to similar investigations performed in the United Kingdom. Canadian Spine Society (CSS) members were sampled using an online questionnaire which was based on previous investigations performed in the United Kingdom. Fifteen questions addressed the various aspects of surgeons’ practice: fusion techniques, implant preferences, and bone grafting procedures. Responses were analyzed by means of descriptive statistics. Of 139 eligible CSS members, 41 spinal surgeons completed the survey (29.5%). The most common fusion approach was via transforaminal lumber interbody fusion (TLIF) with 87.8% performing at least one procedure in the previous year. In keeping with this, 24 surgeons (58.5%) had performed 11 to 50 cases in that time frame. Eighty-six percent had performed no lumbar artificial disc replacements over their last year of practice. There was clear consistency on the relevance of a patient specific management (73.2%) on the preferred fusion approach. The most preferred method was pedicle screw fixation (78%). The use of stand-alone cages was not supported by any respondents. With regards to the cage material, titanium cages were the most used (41.5%). Published clinical outcome data was the most important variable in dictating implant choice (87.8%). Cage thickness was considered the most important aspect of cage geometry and hyperlordotic cages were preferred at the lower lumbar levels. Autograft bone graft was most commonly preferred (61.0%). Amongst the synthetic options, DBX/DBM graft (64.1%) in injectable paste form (47.5%) was preferred. In conclusion, findings from this study are in partial agreement with previous work from the United Kingdom, but highlight the variance of practice within Canada and the need for large-scale clinical studies aimed to set specific guidelines for certain pathologies or patient categories


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 205 - 205
1 Sep 2012
Kukkar N Beck RT Mai MC Sullivan DN Milbrandt JC Freitag P
Full Access

Purpose. Degenerative changes of the lumbar motion segment often lead to stenosis of the spinal canal or neuroforamen. Axial lumbar interbody fusion (AxiaLIF) is intended to indirectly increase and stabilize foraminal dimensions by restoring disc height in patients with degenerative disc disease, thereby relieving axial and radicular pain. Therefore, this study investigated the effects of AxiaLIF on anterior disc height, posterior disc height, foraminal height and foraminal width as well as to determine the effectiveness of this minimally-invasive technique for indirect decompression and restoration of disc height. Method. Eighty-one patients who underwent a 360 degree lumbar interbody fusion at L4-S1 and L5-S1 with AxiaLIF between November 2008 and May 2010 and satisfied all inclusion criteria were included. The preoperative and three-month postoperative digital radiographs were reviewed and analyzed. Disc heights were measured in the planes of the anterior and posterior surfaces of the adjacent vertebral bodies. Foraminal height was measured as the maximum distance between the inferior margin of the pedicle of the superior vertebra and the superior margin of the pedicle of the inferior vertebra. Foraminal width was measured as the shortest distance between the edge of the superior facet of the caudal vertebra and the posterior edge of inferior endplate of the cranial vertebra. Potential magnification error between pre- and post-operative radiographs was corrected using the anterior vertebral height of L5 vertebra. Results. Our study shows that there is a mean increase of 42.0% in posterior disc height (PDH) at L4-5 and 21.5% in anterior disc height (ADH) at L4-5 and PDH mean increase of 33.6% and 16.3% in ADH at L5-S1 in two-level AxiaLIF cases. Similarly the mean change in foraminal height (FH) was 12.6% at L4-5 and 10.8% at L5-S1 in 2-levels AxiaLIF. The mean change in foraminal width (FW) at L4-L5 was 19.9% and 29.1% at L5-S1 in 2-levels AxiaLIF. In the single level AxiaLIF group, the mean change in PDH was 43.1%, the ADH change was 17.5%, the average change in FH was 14.4%, and mean change in FW was 25.3%. The change is reflected as a percentage of the preoperative value. All changes from preoperative to postoperative values were statistically significant. Conclusion. AxiaLIF appears to be an effective minimally invasive device to increase disc height and neuroforaminal area. Our findings appear equivalent to anterior lumbar interbody fusion and transforaminal lumbar interbody fusion in terms of indirect decompression and increase in disc height. This, in combination with the added benefit of preserving the annulus, anterior longitudinal ligament, and posterior longitudinal ligament, suggests the AxiaLIF is an excellent alternative for this patient population. However, additional follow-up studies are necessary to confirm the long-term ability of the implant to maintain fusion and preserve the improvements in disc and foraminal area


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 1 - 1
1 Dec 2015
Nunes A Caetano A Sousa J Campos B Almeida R Consciência J
Full Access

To report a rare case of successfully treated synchronous shoulder septic arthritis, total knee replacement infection and lumbar spondylodiscitis in a patient with rheumatoid arthritis. Fifty-six year old woman, with a history of rheumatoid arthritis diagnosed at twenty-five year old, and total knee replacement at fifty-four. Recently treated with etanercept, presented with acute inflammatory signs of the right shoulder in addition to right knee and lumbar back pain for 6 months. After a shoulder and knee arthrocentesis the diagnosis suspicion of shoulder septic arthritis and total knee replacement infection was confirmed. Therefore it was performed shoulder arthroscopic irrigation and debridement and the first of two stages knee revision, with implantation of antibiotic cement on cement articulating spacer. It was also diagnosed a L1–L2 and L4–L5 spondylodiscitis with dural compression documented on MRI, which determined surgical treatment. By a posterior approach it was performed instrumentation from T11 to L5, followed by L1–L2 and L4–L5 discectomy and interbody fusion with autograft. Shoulder and knee synovial fluid cultures where positive for Methicillin Sensible Staphylococcus aureus narrowing the broad-spectrum combination therapy to levofloxacin for six weeks, with symptomatic relieve and C-reactive protein and white blood cell count returning to normal values. Almost one year down the line the patient remained with no sign of infection, even under the influence of immunosuppressive therapeutic. She returned to her previous status concerning the rheumatologic disease and the second stage knee revision is being planned to happen on the short run. Rheumatoid arthritis patients are a high-risk group for septic arthritis considering, among others, the immunosuppressive therapeutics and the frequent history of arthroplasty. The presented case illustrates three different type of septic complication in the same patient. The timely and aggressive approach was the key factor for a good outcome


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 139 - 139
1 Jan 2016
Rudez J Benneker LM
Full Access

Introduction. Recently ventral plating implants made of carbon/PEEK composite material have been developed with apparently superior material properties in terms of implant fatigue and imaging suitability. In this study we assessed the outcome of the first clinical application of this new implant. Methods. Retrospective, single-center case series of 16 consecutive patients between 2011 and 2013 undergoing ventral stabilization surgery with a new carbon plating system (see figure 1). We collected data in terms of safety of the procedure (screw positioning, blood loss, operation time), quality and reliability of the implant (revisions, dislocations, screw loosening, fusion, adjacent segment degeneration), clinical outcome and biological tolerance (cervical pain / discomfort, dysphagia). Results. All patients were available for clinical and radiological follow up. Mean surgery time was 128 minutes, in 11 cases one in 5 cases 2 segments were treated. The clinical findings and patient's satisfaction were good in 14 and fair in two cases. All patients who completed the 6 months control had a radiographically confirmed interbody fusion; no implant loosening or failure and no infections were observed. (see figure 2). There was one implant related complication (dysphagia due to malpositioning of the plate which was removed 4 days after implant insertion) and one complication related to the approach (Horner's syndrome). Conclusion. In this retrospective study of 16 patients we found that the use of a carbon-composite plating system lead to results comparable to the “gold standard” metal plates in terms of safety / clinical outcome and reliability of the implant. There was one revision due to dysphagia. The MR imaging of the patients who have been operated with the carbon/PEEK system showed superior quality with reduced artifacts and improved diagnostical properties, especially when evaluating the neurogical structures. (see figure 3). The overall clinical outcome and patient acceptance of the implant was good. The radiologic findings on follow up of 2, 6 and 12 months have shown a high fatigue strength with no signs of implant failure in terms of dislocation, loosening or breakage. Therefore we conclude that the use of the carbon/PEEK plating system is suitable for ventral stabilization in trauma and degenerative disease


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_15 | Pages 91 - 91
1 Dec 2015
Caetano A Nunes A Sousa J Almeida R
Full Access

Pyogenic spondylodiscitis is an uncommon but clinically relevant infection that represents 3 to 5% of all cases or osteomyelitis. In Europe, it has an estimated incidence of 0.4 to 2.4/100.000 people/year. Mortality is less than 5%, increasing with a delay in diagnosis greater than 2 month. Patients with renal failure have greater predisposition to infections, consequence of the chronic uremic state. Infection rates in Polytetrafluoroethylene (PTFE) hemodialysis grafts in end-stage renal disease (ESRD) range from 3 to 35%. We present a rare case of concurrent spondylodiscitis and PTFE graft infection in a patient with ESRD and recurrent urinary tract infections (RUTI). The authors present a case of an 80-year-old man with past medical history significant for abdominal aortic aneurysm, bilateral ureter-hydronephrosis, Pseudomonas aeruginosa RUTI and ESRD. Three months after a dialysis PTFE graft hemoaccess was performed a Pseudomonas graft infection was diagnosed and the PTFE graft was removed. One week later, the patient was observed in the author's Department due to an insidious dorsal-lumbar mechanic back pain without neurologic deficits, with progressive deterioration over the past 6 months. A T12-L1 and L1-L2 spondylodiscitis with dural compression was diagnosed and vertebral instability was documented on MRI and TC, demanding surgical treatment. Instrumented fusion with a screw and rod construct was performed from T9 to L5, along with somatic L1 and L2 debridement, and T12-L1 interbody fusion with autograft. Microbiology results were positive for Pseudomonas aeruginosa. Antibotic therapy with ceftazidime (6 weeks) and ciprofloxacin (12 weeks) was performed. Symptomatic relieve was achieved and C-reactive protein and white blood cell count returned to normal values. No complications were documented. Four months post-surgery, the patient was asymptomatic (Visual Analogue Scale=0), with no significant limitation in his daily life activity (Disability Rating Index=85) and the vertebral body height was sustained, with imagiological signs of spinal fusion. ESRD patients are more susceptive to infections. Failure in early diagnosis and treatment may lead to disease progression and subsequent functional limitations, deformity and increase in mortality. An aggressive approach, despite delay on diagnosis, is the key factor for a worthy outcome. Despite the good results, recrudescence of spondylodiscitis is known to occur even years after the original offense is treated


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 44 - 44
1 Aug 2013
Rawoot A Nel L Dunn R
Full Access

Introduction:. Circumferential arthrodesis of the spine may be achieved by posterior-only or anterior and posterior surgery. Posterior-based interbody fusions have significant limitations including unreliable improvement of segmental lordosis and variable rates of post-operative radiculopathy. Combined anterior and posterior surgery introduces significant cost and peri-operative morbidity. The purpose of this paper is to report the radiographic and clinical outcomes of posterior-based circumferential arthrodesis using a novel expandable interbody cage. Methods:. A prospective pilot clinical trial with one year follow-up of the only expandable cage approved by the FDA for interbody application. Clinical outcomes measured include ODI and VAS for back and leg. Radiographic outcomes include arthrodesis rates based upon CT scan. Statistical significance for change in health status was calculated using Student's t-test. Results:. 10 consecutive patients (11 levels) with lumbar degenerative pathology underwent circumferential arthrodesis with a transforaminal interbody approach. 10 of 11 levels were fused based upon CT scan. ODI scores improved a median of 37 to 20 at 6 months and 17 at one year (p = 0.0003). The VAS for back and leg pain likewise from 6 to 2 at 12 months (p = −.003). No patient reported an increase in leg pain from pre-op to post-op. One patient with a 2-level fusion had a non-union at 1 level requiring revision surgery. Conclusion:. Circumferential arthrodesis with a TLIF approach is an important technique for the management of lumbar degenerative pathology. The experience with a novel expandable TLIF cage demonstrates excellent results based upon clinical outcome and fusion rates. The expandable interbody cage allows in-situ height increase which is useful for optimizing clinical and radiographic outcomes in TLIF surgery


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 63 - 63
1 Feb 2012
Crawford R Crawford J Carey-Smith R Hilton J
Full Access

Surgery for degenerative lumbar spondylolisthesis may entail both decompression and fusion. The knee-chest position facilitates the decompression, but fixation in this position risks fusion in kyphosis. This can be avoided by intra-operative re-positioning to the prone position. The aim of this study was to quantify the restoration of lordosis achieved by intra-operative repositioning and to assess the clinical and radiological outcome. A total of forty consecutive patients with degenerative lumbar spondylolisthesis and stenosis were treated by posterior decompression and interbody fusion with pedicle screw fixation. The screw insertion, decompression and interbody grafting were performed with the patient in the knee-chest position. The patient was then re-positioned to the fully prone position for fusion. Sagittal plane angles were measured pre-, intra- and post-operatively. Clinical assessment was performed using SF-36 scores and visual analogue scores for back and leg pain. The sagittal plane angle increased from median 16.0 degrees pre-operatively to 23.1 degrees post-operatively (p<0.01) and this was maintained at the last follow-up (mean 21 months). The SF-36 scores improved for 7 out of 8 domains and the physical score improved from 29% to 40% (p<0.05). The mean pain scores improved significantly from 7.5 to 3.8 for back pain and from 7.6 to 3.7 for leg pain (p<0.001). Lumbar spondylolisthesis was found to be associated with a reduction of normal lumbar lordosis and the knee-chest position exacerbates this loss of lordosis. Intra-operative repositioning restored lordosis to greater than the pre-operative angle and was associated with a good clinical outcome


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 169 - 169
1 May 2012
Vaccaro A
Full Access

Cahill et. al. published a large review of the use of BMP in spinal fusions. They reviewed the nationwide inpatient database, which represents approximately 25% of use U.S. Community Hospitals from the years 2002 to 2006. This included over 300,000 fusion type procedures. They noted increased complications with the use of anterior cervical procedures specifically increased complications with increased dysphasia and wound complications. Due to these concerns, the Food and Drug Administration released last year a public health notification about the potential life threatening complications related to the use of BMP in anterior cervical spine fusions. Joseph & Rampersaud noticed a 20% incidence of heterotopic ossification in patients undergoing this procedure versus only 8% for patients who had undergone fusions without BMP. Wong et. al. published a report on five cases of neurologic injury that relate to the use of BMP and the formation of heterotopic bone. Again, the suggestion of a barrier or closure defect was brought up and this may help minimise the risks; however, further work is noted. Multiple authors have noted a phenomenon of osteolysis occurring around graft fusion sites for the use of BMP. McCullen et. al. evaluated that 32 levels in 26 patients who had undergone a TLIF procedure. It is unclear the carcinogenic and tetraogenic effects of the use of BMP in the spine and also, the effects of repeat exposures on BMP has yet to be addressed. Finally, the long term cost and benefits of the use of BMP on the health care system has yet to be fully addressed. So in conclusion, BMP2 is effective in producing fusions especially in challenging environments, deformity, smoking and infection. However, the complications continue to be a concern especially with regards to interbody fusions as well as in the cervical spine