Advertisement for orthosearch.org.uk
Results 1 - 20 of 147
Results per page:
The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 56 - 63
1 Jan 2015
Abane L Anract P Boisgard S Descamps S Courpied JP Hamadouche M

In this study we randomised 140 patients who were due to undergo primary total knee arthroplasty (TKA) to have the procedure performed using either patient-specific cutting guides (PSCG) or conventional instrumentation (CI). . The primary outcome measure was the mechanical axis, as measured at three months on a standing long-leg radiograph by the hip–knee–ankle (HKA) angle. This was undertaken by an independent observer who was blinded to the instrumentation. Secondary outcome measures were component positioning, operating time, Knee Society and Oxford knee scores, blood loss and length of hospital stay. A total of 126 patients (67 in the CI group and 59 in the PSCG group) had complete clinical and radiological data. There were 88 females and 52 males with a mean age of 69.3 years (47 to 84) and a mean BMI of 28.6 kg/m. 2. (20.2 to 40.8). The mean HKA angle was 178.9° (172.5 to 183.4) in the CI group and 178.2° (172.4 to 183.4) in the PSCG group (p = 0.34). Outliers were identified in 22 of 67 knees (32.8%) in the CI group and 19 of 59 knees (32.2%) in the PSCG group (p = 0.99). There was no significant difference in the clinical results (p = 0.95 and 0.59, respectively). Operating time, blood loss and length of hospital stay were not significantly reduced (p = 0.09, 0.58 and 0.50, respectively) when using PSCG. . The use of PSCG in primary TKA did not reduce the proportion of outliers as measured by post-operative coronal alignment. . Cite this article: Bone Joint J 2015;97-B:56–63


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 30 - 30
1 Jul 2022
Middleton R Jackson W Alvand A Bottomley N Price A
Full Access

Abstract. Background. Since 2012 we have routinely used the cementless Oxford medial unicompartmental knee arthroplasty (mUKA), with microplasty instrumentation, in patients with anteromedial osteoarthritis (AMOA) meeting modern indications. We report the 10-year survival of 1000 mUKA with minimum 4-year follow-up. Methods. National Joint Registry (NJR) surgeon reports were interrogated for each senior author to identify the first 1,000 mUKAs performed for osteoarthritis. A minimum of 4 years follow-up was required. There was no loss to follow-up. The NJR status of each knee was established. For each mUKA revision the indication and mechanism of failure was determined using local patient records. The 10-year implant survival was calculated using life-table analysis. Results. The 1,000 mUKA cohort represented 55% of all primary knee replacements in the period, with an average age of 67.7 years and a 54%/46% male/female split. There were 17 revisions (11 for arthritis progression, 4 infections, 1 dislocation and 1 aseptic loosening). The 10-year survival was 98% (44 at risk in 10th year). One patient sustained a periprosthetic fracture at 3 weeks, treated with buttress plate fixation. Discussion. This is the first detailed series reporting the long-term outcome of the cementless Oxford mUKA implanted using microplasty instrumentation. There was a low failure rate, with only one revision for aseptic loosening. Lateral progression was the commonest cause for revision, with an incidence of 1%. This report provides evidence that the combination of evidence-based indications, well-designed instrumentation and cementless fixation can provide excellent long-term survival for the Oxford mUKA in treating AMOA


The Bone & Joint Journal
Vol. 101-B, Issue 5 | Pages 565 - 572
1 May 2019
Teeter MG Marsh JD Howard JL Yuan X Vasarhelyi EM McCalden RW Naudie DDR

Aims. The purpose of the present study was to compare patient-specific instrumentation (PSI) and conventional surgical instrumentation (CSI) for total knee arthroplasty (TKA) in terms of early implant migration, alignment, surgical resources, patient outcomes, and costs. . Patients and Methods. The study was a prospective, randomized controlled trial of 50 patients undergoing TKA. There were 25 patients in each of the PSI and CSI groups. There were 12 male patients in the PSI group and seven male patients in the CSI group. The patients had a mean age of 69.0 years (. sd. 8.4) in the PSI group and 69.4 years (. sd. 8.4) in the CSI group. All patients received the same TKA implant. Intraoperative surgical resources and any surgical waste generated were recorded. Patients underwent radiostereometric analysis (RSA) studies to measure femoral and tibial component migration over two years. Outcome measures were recorded pre- and postoperatively. Overall costs were calculated for each group. Results. There were no differences (p > 0.05) in any measurement of migration at two years for either the tibial or femoral components. Movement between one and two years was < 0.2 mm, indicating stable fixation. There were no differences in coronal or sagittal alignment between the two groups. The PSI group took a mean 6.1 minutes longer (p = 0.04) and used a mean 3.4 less trays (p < 0.0001). Total waste generated was similar (10 kg) between the two groups. The PSI group cost a mean CAD$1787 more per case (p < 0.01). Conclusion. RSA criteria suggest that both groups will have revision rates of approximately 3% at five years. The advantages of PSI were minimal or absent for surgical resources used and waste eliminated, and for meeting target alignment, yet had significantly greater costs. Therefore, we conclude that PSI may not offer any advantage over CSI for routine primary TKA cases. Cite this article: Bone Joint J 2019;101-B:565–572


Aims. Patient-specific instrumentation of total knee arthroplasty (TKA) is a technique permitting the targeting of individual kinematic alignment, but deviation from a neutral mechanical axis may have implications on implant fixation and therefore survivorship. The primary objective of this randomized controlled study was to compare the fixation of tibial components implanted with patient-specific instrumentation targeting kinematic alignment (KA+PSI) versus components placed using computer-assisted surgery targeting neutral mechanical alignment (MA+CAS). Tibial component migration measured by radiostereometric analysis was the primary outcome measure (compared longitudinally between groups and to published acceptable thresholds). Secondary outcome measures were inducible displacement after one year and patient-reported outcome measures (PROMS) over two years. The secondary objective was to assess the relationship between alignment and both tibial component migration and inducible displacement. Patients and Methods. A total of 47 patients due to undergo TKA were randomized to KA+PSI (n = 24) or MA+CAS (n = 23). In the KA+PSI group, there were 16 female and eight male patients with a mean age of 64 years (. sd. 8). In the MA+CAS group, there were 17 female and six male patients with a mean age of 63 years (. sd. 7). Surgery was performed using cemented, cruciate-retaining Triathlon total knees with patellar resurfacing, and patients were followed up for two years. The effect of alignment on tibial component migration and inducible displacement was analyzed irrespective of study group. Results. There was no difference over two years in longitudinal migration of the tibial component between the KA+PSI and MA+CAS groups (reaching median maximum total point motion migration at two years of 0.40 mm for the KA+PSI group and 0.37 mm for the MA+CAS group, p = 0.82; p = 0.68 adjusted for age, sex, and body mass index (BMI) for all follow-ups). Both groups had mean migrations below acceptable thresholds. There was no difference in inducible displacement (p = 0.34) or PROMS (p = 0.61 for the Oxford Knee Score) between groups. There was no correlation between alignment and tibial component migration or alignment and inducible displacement. These findings support non-neutral alignment as a viable option with this component, with no evidence that it compromises fixation. Conclusion. Kinematic alignment using patient-specific instrumentation in TKA was associated with acceptable tibial component migration, indicating stable fixation. These results are supportive of future investigations of kinematic alignment. Cite this article: Bone Joint J 2019;101-B:929–940


The Bone & Joint Journal
Vol. 96-B, Issue 8 | Pages 1052 - 1061
1 Aug 2014
Thienpont E Schwab PE Fennema P

We conducted a meta-analysis, including randomised controlled trials (RCTs) and cohort studies, to examine the effect of patient-specific instruments (PSI) on radiological outcomes after total knee replacement (TKR) including: mechanical axis alignment and malalignment of the femoral and tibial components in the coronal, sagittal and axial planes, at a threshold of > 3º from neutral. Relative risks (RR) for malalignment were determined for all studies and for RCTs and cohort studies separately. Of 325 studies initially identified, 16 met the eligibility criteria, including eight RCTs and eight cohort studies. There was no significant difference in the likelihood of mechanical axis malalignment with PSI versus conventional TKR across all studies (RR = 0.84, p = 0.304), in the RCTs (RR = 1.14, p = 0.445) or in the cohort studies (RR = 0.70, p = 0.289). The results for the alignment of the tibial component were significantly worse using PSI TKR than conventional TKR in the coronal and sagittal planes (RR = 1.75, p = 0.028; and RR = 1.34, p = 0.019, respectively, on pooled analysis). PSI TKR showed a significant advantage over conventional TKR for alignment of the femoral component in the coronal plane (RR = 0.65, p = 0.028 on pooled analysis), but not in the sagittal plane (RR = 1.12, p = 0.437). Axial alignment of the tibial (p = 0.460) and femoral components (p = 0.127) was not significantly different. We conclude that PSI does not improve the accuracy of alignment of the components in TKR compared with conventional instrumentation. Cite this article: Bone Joint J 2014; 96-B:1052–61


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 52 - 52
1 Oct 2018
Naudie DD Broberg JS Howard JL Vasarhelyi EM Yuan X McCalden RW Teeter MG
Full Access

Introduction. The effectiveness of patient specific instrumentation (PSI) to perform total knee arthroplasty (TKA) remains controversial. Multiple studies have been published that reveal conflicting results on the effectiveness of PSI, but no study has analyzed the contact kinematics within knee joints replaced with the use of PSI. Since a departure from normal kinematics can lead to eccentric loading, premature wear, and component loosening, studying the kinematics in patients who have undergone TKA with PSI can provide valuable insight on the ability of PSI to improve functionality and increase longevity. The goal of the present study was to compare femoral and tibial component migration (predictive of long-term loosening and revision) and contact kinematics following TKA using conventional instruments (CI) and PSI based surgical techniques. Methods. The study was designed as a prospective, randomized controlled trial of 50 patients, with 25 patients each in the PSI and CI groups, powered for radiostereometric analysis (RSA). Patients in the PSI group received an MRI and standing 3-foot x-rays to construct patient-specific cut-through surgical guides for the femur and tibia with a mechanical limb alignment. All patients received the same posterior-stabilized implant with marker beads inserted in the bone around the implants to enable RSA imaging. Patients underwent supine RSA exams at multiple time points (two and six weeks, three and six months, and one and two years). At 2 years post-op, a series of RSA radiographs were acquired at different knee flexion angles, ranging in 20° increments from 0° to 120°, to measure the tibiofemoral contact kinematics. Migrations of the femoral and tibial components were calculated using model-based RSA software. Kinematics were measured for each condyle for magnitude of excursion, contact location, and stability. Results. There were no differences (p > 0.05) between the PSI and CI groups for demographics or pre- and post-operative patient reported outcome scores. Three patients in the PSI group and seven patients in the CI group (p = 0.28) had a post-operative limb alignment outside of the neutral target (>3° varus or valgus). There was no difference in the change of tibial slope from pre- to post-operation between groups (p = 0.49). There were no differences (p > 0.05) in translations or rotations in any individual plane across all time points for either the tibial or femoral components. Maximum total point motion (MTPM) at 6 months for the tibial component was 0.54 ± 0.25 mm in the CI group and 0.51 ± 0.22 mm in the PSI group (p = 0.77), placing both groups at the low end of the “at risk” category for predicted loosening. Change in MTPM from 6 months to 1 year and again from 1 year to 2 years was <0.2 mm, indicating both groups of implants had stable fixation. Femoral component MTPM was also not different (p > 0.05) between groups. There was no significant difference between PSI and CI groups with respect to magnitude of excursion on both medial (p = 0.54) and lateral (p = 0.81) condyles. There was also no difference in contact locations on both the medial and lateral condyles (p = 0.28 to 0.91) for all angles of flexion. There was no significant difference present between PSI and CI groups when comparing the stability for both the medial (p = 0.06) and lateral (= 0.85) condyles. Condylar separation was present in 3/20 CI patients and 0/16 PSI patients (p = 0.24). Conclusion. Using the latest RSA criteria for predicting failure from early migration, the use of PSI does not provide an advantage over CI for preventing aseptic loosening. Moreover, PSI did not provide any substantial advantage over CI for TKA surgery with respect to contact kinematics


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 9 - 9
1 Oct 2019
Kinsey T Chen AF Hozack WJ Mont MA Orozco F Mahoney OM
Full Access

Introduction

Component position and overall limb alignment following total knee arthroplasty (TKA) have been shown to influence prosthetic survivorship and clinical outcomes1. The objective of this study was to compare the accuracy to plan of three-dimensional modeled (3D) TKA with manual TKA for component alignment and position.

Methods

An open-label prospective clinical study was conducted to compare 3D modeling with manual TKA (non-randomized) at 4 U.S. centers between July 2016 and August 2018. Men and women aged > 18 with body mass index < 40kg/m2 scheduled for unilateral primary TKA were recruited for the study. 144 3DTKA and 86 manual TKA (230 patients) were included in the analysis of accuracy outcomes. Seven high-volume, arthroplasty fellowship-trained surgeons performed the surgeries. The surgeon targeted a neutral (0°) mechanical axis for all except 9 patients (4%) for whom the target was within 0°±3°. Computed tomography (CT) scans obtained approximately 6 weeks post-operatively were analyzed using anatomical landmarks to determine femoral and tibial component varus/valgus position, femoral component internal/external rotation, and tibial component posterior slope. Absolute deviation from surgical plan was defined as the absolute value of the difference between the CT measurement and the surgeon's operative plan. Smaller absolute deviation from plan indicated greater accuracy. Mean component positions for manual and 3DTKA groups were compared using two-sample t tests for unequal variances. Differences of absolute deviations from plan were compared using stratified Wilcoxon tests, which controlled for study center and accounted for skewed distributions of the absolute values. Alpha was 0.05 two-sided. At the time of this report, CT measurements of femoral component rotation position referenced from the posterior condylar axis were not yet completed; therefore, the current analysis of femoral component rotation accuracy to plan reflects one center that exclusively used manual instruments referencing the transepicondylar axis (TEA).


Bone & Joint Open
Vol. 3, Issue 8 | Pages 656 - 665
23 Aug 2022
Tran T McEwen P Peng Y Trivett A Steele R Donnelly W Clark G

Aims. The mid-term results of kinematic alignment (KA) for total knee arthroplasty (TKA) using image derived instrumentation (IDI) have not been reported in detail, and questions remain regarding ligamentous stability and revisions. This paper aims to address the following: 1) what is the distribution of alignment of KA TKAs using IDI; 2) is a TKA alignment category associated with increased risk of failure or poor patient outcomes; 3) does extending limb alignment lead to changes in soft-tissue laxity; and 4) what is the five-year survivorship and outcomes of KA TKA using IDI?. Methods. A prospective, multicentre, trial enrolled 100 patients undergoing KA TKA using IDI, with follow-up to five years. Alignment measures were conducted pre- and postoperatively to assess constitutional alignment and final implant position. Patient-reported outcome measures (PROMs) of pain and function were also included. The Australian Orthopaedic Association National Joint Arthroplasty Registry was used to assess survivorship. Results. The postoperative HKA distribution varied from 9° varus to 11° valgus. All PROMs showed statistical improvements at one year (p < 0.001), with further improvements at five years for Knee Osteoarthritis Outcome Score symptoms (p = 0.041) and Forgotten Joint Score (p = 0.011). Correlation analysis showed no difference (p = 0.610) between the hip-knee-ankle and joint line congruence angle at one and five years. Sub-group analysis showed no difference in PROMs for patients placed within 3° of neutral compared to those placed > 3°. There were no revisions for tibial loosening; however, there were reports of a higher incidence of poor patella tracking and patellofemoral stiffness. Conclusion. PROMs were not impacted by postoperative alignment category. Ligamentous stability was maintained at five years with joint line obliquity. There were no revisions for tibial loosening despite a significant portion of tibiae placed in varus; however, KA executed with IDI resulted in a higher than anticipated rate of patella complications. Cite this article: Bone Jt Open 2022;3(8):656–665


Bone & Joint Open
Vol. 3, Issue 6 | Pages 495 - 501
14 Jun 2022
Keohane D Sheridan GA Masterson E

Aims. Total knee arthroplasty (TKA) is a common and safe orthopaedic procedure. Zimmer Biomet's NexGen is the second most popular brand of implant used in the UK. The primary cause of revision after the first year is aseptic loosening. We present our experience of using this implant, with significant concerns around its performance with regards early aseptic loosening of the tibial component. Methods. A retrospective, single-surgeon review was carried out of all of the NexGen Legacy Posterior Stabilized (LPS) TKAs performed in this institute. The specific model used for the index procedures was the NexGen Complete Knee System (Legacy Knee-Posterior Stabilized LPS-Flex Articular Surface, LPS-Flex Femoral Component Option, and Stemmed Nonaugmentable Tibial Component Option). Results. Between 2013 and 2016, 352 NexGen TKAs were carried out on 331 patients. A total of 62 TKAs have been revised to date, giving an all-cause revision rate of 17.6% at a minimum of five years. Three of these revisions were due to infection. Overall, 59 of the revisions were performed for aseptic loosening (16.7%) of the tibial component. The tibial component was removed intraoperatively without instrumentation due to significant tibial debonding between the implant-cement interface. Conclusion. While overall, we believe that early aseptic loosening is multi-factorial in nature, the significantly high aseptic revision rate, as seen by an experienced fellowship-trained arthroplasty surgeon, has led us to believe that there is a fundamental issue with this NexGen implant design. Continued implant surveillance and rigorous review across all regions using this particular implant is warranted based on the concerning findings described here. Cite this article: Bone Jt Open 2022;3(6):495–501


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 115 - 120
1 Jul 2019
Hooper J Schwarzkopf R Fernandez E Buckland A Werner J Einhorn T Walker PS

Aims. This aim of this study was to assess the feasibility of designing and introducing generic 3D-printed instrumentation for routine use in total knee arthroplasty. Materials and Methods. Instruments were designed to take advantage of 3D-printing technology, particularly ensuring that all parts were pre-assembled, to theoretically reduce the time and skill required during surgery. Concerning functionality, ranges of resection angle and distance were restricted within a safe zone, while accommodating either mechanical or anatomical alignment goals. To identify the most suitable biocompatible materials, typical instrument shapes and mating parts, such as dovetails and screws, were designed and produced. Results. Before and after steam sterilization, dimensional analysis showed that acrylonitrile butadiene styrene could not withstand the temperatures without dimensional changes. Oscillating saw tests with slotted cutting blocks produced debris, fractures, or further dimensional changes in the shape of Nylon-12 and polymethylmethacrylate (MED610), but polyetherimide ULTEM 1010 was least affected. Conclusion. The study showed that 3D-printed instrumentation was technically feasible and had some advantages. However, other factors, such as whether all procedural steps can be accomplished with a set of 3D-printed instruments, the logistics of delivery, and the economic aspects, require further study. Cite this article: Bone Joint J 2019;101-B(7 Supple C):115–120


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 78 - 80
1 Jan 2016
Lee G

Patient specific instrumentation (PSI) uses advanced imaging of the knee (CT or MRI) to generate individualised cutting blocks aimed to make the procedure of total knee arthroplasty (TKA) more accurate and efficient. However, in this era of healthcare cost consciousness, the value of new technologies needs to be critically evaluated. There have been several comparative studies looking at PSI versus standard instrumentation. Most compare PSI with conventional instrumentation in terms of alignment in the coronal plane, operative time and surgical efficiency, cost effectiveness and short-term outcomes. Several systematic reviews and meta-analyses have also been published. PSI has not been shown to be superior compared with conventional instrumentation in its ability to restore traditional mechanical alignment in primary TKA. Most studies show comparative efficacy and no decrease in the number of outliers in either group. In terms of operative time and efficiency, PSI tended towards decreasing operative time, saving a mean of five minutes per patient (0 to 20). Furthermore, while some cost savings could be realised with less operative time and reduced instrumentation per patient, these savings were overcome by the cost of the CT/MRI and the cutting blocks. Finally, there was no evidence that PSI positively affected clinical outcomes at two days, two months, or two years. Consequently, current evidence does not support routine use of PSI in routine primary TKA. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):78–80


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 85 - 85
1 Jul 2022
Rahman A Heath D Mellon S Murray D
Full Access

Abstract. Introduction. In cementless UKR, primary fixation of the tibial component is achieved by press-fitting a keel (i.e. with interference) into a vertical slot cut into the proximal tibia. This may adversely affect the structural integrity of surrounding bone. Early post-operative peri-prosthetic tibial fractures are 7x more common in very small knees, but the aetiology of these fractures is unknown - such sizes are rarely used in the UK but more common in Asian populations. This study explores the effect of keel-related features in fracture risk of these very small tibias. Method. This in vitro study compares the effect of keel and slot depth (standard vs 33% shallower vs nil) and loading position (anterior/posterior gait range limits: mid-tibia vs 8mm posterior) on fracture load and path. 3D-printed titanium components were implanted using surgical instrumentation/technique, in bone-analogue foam machined to a CT-reconstructed very small tibia which subsequently experienced a peri-prosthetic fracture. Results. Introducing a standard slot reduces load-to-fracture by 50% (1421N-vs-710N, p<0.0001). Press-fitting a standard keel further reduces load-to-fracture by 40% (710N-vs-423N, p=0.0001). A shallower slot/keel increases load-to-fracture substantially (slot: 27% increase, 904N-vs-710N p=0.0003, slot+keel: 60% increase, 683N-vs-423N p=0.0004). Deeper keels fractured more vertically (current 8.2° vs shallow 15.5° vs nil 21°, degrees-to-vertical, p<0.0001). There was no difference caused by loading position. Conclusion. In very small tibias, a standard cementless keel significantly weakens the bone and may contribute to fractures. Therefore, decreasing interference or using a shallower keel should decrease the risk of fracture, although it might compromise fixation


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 48 - 48
1 Jul 2022
Blucher N Fletcher J Platt N Porteous A
Full Access

Abstract. Introduction. Controversy exists regarding the optimal tibial coronal alignment in total knee arthroplasty. Many believe navigation or robotics are required to set kinematic alignments or to ensure they remain within ‘safe’ limits e.g. maximum 5° varus on the tibia. Given most navigation or robotic systems require the surgeon to identify the ankle malleoli, this study aimed to radiographically analyse standardly used intra-operative landmarks around the ankle, assessing their value in achieving kinematic alignment / setting safety boundaries. Materials and Methods. Long leg alignment radiographs were analysed independently by two orthopaedic surgeons at two time points, eight weeks apart. Angles were measured between the long axis of the tibia (TB) and: 1. lateral malleolus (TB-LM), 2. lateral border of the talus (TB-LT) and 3. medial aspect of the medial malleolus (TB-MM). Intra- and inter-rater reliabilities were assessed. Results. One hundred and sixty-seven radiographs in 119 patients were analysed; mean age 71.6 years. Mean angles (95% CI) were: TB-LM 4.8° (4.7°- 4.8°), TB-LT 2.6° (2.5° - 2.6°) and TB-MM 4.2° (4.1° - 4.2°). Interrater reliability was good for TB-LM (ICC = 0.72) and TB-MM (ICC=0.67), and fair for TB-LT (ICC= 0.50). Intra-rater reliability was excellent for all measures (ICC >0.85). Conclusion. There are consistent angles between tibial alignment and ankle landmarks. Using these landmarks, with standard instrumentation and alignment checks, allows surgeons to define safe limits, e.g. maximum 4.8° tibial varus if aligned to the tip of the lateral malleolus or set a 2.5° varus cut, without the need for added technology


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 83 - 83
1 Jul 2022
Dandridge O Garner A Amis A Cobb J Arkel RV
Full Access

Abstract. Patellofemoral Arthroplasty (PFA) is an alternative to TKA for patellofemoral osteoarthritis that preserves tibiofemoral compartments. It is unknown how implant positioning affects biomechanics, especially regarding the patella. This study analysed biomechanical effects of femoral and patellar component position, hypothesising femoral positioning is more important. Nine cadaveric knees were studied using a repeated-measures protocol. Knees were tested intact, then after PFA implanted in various positions: neutral (as-planned), patellar over/understuffing (±2mm), patellar tilt, patellar flexion, femoral rotation, and femoral tilt (all ±6°). Arthroplasties were implemented with CT-designed patient-specific instrumentation. Anterior femoral cuts referenced Whiteside's line and all femoral positions ensured smooth condyle-to-component transition. Knee extension moments, medial patellofemoral ligament (MPFL) length-change, and tibiofemoral and patellofemoral kinematics were measured under physiological muscle loading. Data were analysed with one-dimensional statistical parametric mapping (Bonferroni-Holm corrected). PFA changed knee function, altering extension moments (p<0.001) and patellofemoral kinematics (p<0.05), but not tibiofemoral kinematics. Patellar component positioning affected patellofemoral kinematics: over/understuffing influenced patellar anterior translation and the patellar tendon moment arm (p<0.001). Medially tilted patellar cuts produced lateral patellar tilt (p<0.001) and vice versa. A similar inverse effect occurred with extended/flexed patellar cuts, causing patellar flexion and extension (p<0.001), respectively. Of all variants, only extending the patellar cut produced near-native extension moments throughout. Conversely, the only femoral effect was MPFL length change between medially/laterally rotated components. PFA can restore native knee biomechanics. Provided anterior femoral cuts are controlled and smooth condyle-to-component transition assured, patellar position affects biomechanics more than femoral, contradicting the hypothesis


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1088 - 1095
1 Jun 2021
Banger M Doonan J Rowe P Jones B MacLean A Blyth MJB

Aims. Unicompartmental knee arthroplasty (UKA) is a bone-preserving treatment option for osteoarthritis localized to a single compartment in the knee. The success of the procedure is sensitive to patient selection and alignment errors. Robotic arm-assisted UKA provides technological assistance to intraoperative bony resection accuracy, which is thought to improve ligament balancing. This paper presents the five-year outcomes of a comparison between manual and robotically assisted UKAs. Methods. The trial design was a prospective, randomized, parallel, single-centre study comparing surgical alignment in patients undergoing UKA for the treatment of medial compartment osteoarthritis (ISRCTN77119437). Participants underwent surgery using either robotic arm-assisted surgery or conventional manual instrumentation. The primary outcome measure (surgical accuracy) has previously been reported, and, along with secondary outcomes, were collected at one-, two-, and five-year timepoints. Analysis of five-year results and longitudinal analysis for all timepoints was performed to compare the two groups. Results. Overall, 104 (80%) patients of the original 130 who received surgery were available at five years (55 robotic, 49 manual). Both procedures reported successful results over all outcomes. At five years, there were no statistical differences between the groups in any of the patient reported or clinical outcomes. There was a lower reintervention rate in the robotic arm-assisted group with 0% requiring further surgery compared with six (9%) of the manual group requiring additional surgical intervention (p < 0.001). Conclusion. This study has shown excellent clinical outcomes in both groups with no statistical or clinical differences in the patient-reported outcome measures. The notable difference was the lower reintervention rate at five years for roboticarm-assisted UKA when compared with a manual approach. Cite this article: Bone Joint J 2021;103-B(6):1088–1095


Bone & Joint Research
Vol. 9, Issue 6 | Pages 272 - 278
1 Jun 2020
Tapasvi S Shekhar A Patil S Pandit H

Aims. The mobile bearing Oxford unicompartmental knee arthroplasty (OUKA) is recommended to be performed with the leg in the hanging leg (HL) position, and the thigh placed in a stirrup. This comparative cadaveric study assesses implant positioning and intraoperative kinematics of OUKA implanted either in the HL position or in the supine leg (SL) position. Methods. A total of 16 fresh-frozen knees in eight human cadavers, without macroscopic anatomical defects, were selected. The knees from each cadaver were randomized to have the OUKA implanted in the HL or SL position. Results. Tibial base plate rotation was significantly more variable in the SL group with 75% of tibiae mal-rotated. Multivariate analysis of navigation data found no difference based on all kinematic parameters across the range of motion (ROM). However, area under the curve analysis showed that knees placed in the HL position had much smaller differences between the pre- and post-surgery conditions for kinematics mean values across the entire ROM. Conclusion. The sagittal tibia cut, not dependent on standard instrumentation, determines the tibial component rotation. The HL position improves accuracy of this step compared to the SL position, probably due to better visuospatial orientation of the hip and knee to the surgeon. The HL position is better for replicating native kinematics of the knee as shown by the area under the curve analysis. In the supine knee position, care must be taken during the sagittal tibia cut, while checking flexion balance and when sizing the tibial component


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 354 - 359
1 Mar 2013
Chareancholvanich K Narkbunnam R Pornrattanamaneewong C

Patient-specific cutting guides (PSCGs) are designed to improve the accuracy of alignment of total knee replacement (TKR). We compared the accuracy of limb alignment and component positioning after TKR performed using PSCGs or conventional instrumentation. A total of 80 patients were randomised to undergo TKR with either of the different forms of instrumentation, and radiological outcomes and peri-operative factors such as operating time were assessed. No significant difference was observed between the groups in terms of tibiofemoral angle or femoral component alignment. Although the tibial component in the PSCGs group was measurably closer to neutral alignment than in the conventional group, the size of the difference was very small (89.8° (. sd. 1.2) vs 90.5° (. sd. 1.6); p = 0.030). This new technology slightly shortened the bone-cutting time by a mean of 3.6 minutes (p < 0.001) and the operating time by a mean 5.1 minutes (p = 0.019), without tangible differences in post-operative blood loss (p = 0.528) or need for blood transfusion (p = 0.789). This study demonstrated that both PSCGs and conventional instrumentation restore limb alignment and place the components with the similar accuracy. The minimal advantages of PSCGs in terms of consistency of alignment or operative time are unlikely to be clinically relevant. Cite this article: Bone Joint J 2013;95-B:354–9


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 24 - 30
1 Jun 2020
Livermore AT Erickson JA Blackburn B Peters CL

Aims. A significant percentage of patients remain dissatisfied after total knee arthroplasty (TKA). The aim of this study was to determine whether the sequential addition of accelerometer-based navigation for femoral component preparation and sensor-guided ligament balancing improved complication rates, radiological alignment, or patient-reported outcomes (PROMs) compared with a historical control group using conventional instrumentation. Methods. This retrospective cohort study included 371 TKAs performed by a single surgeon sequentially. A historical control group, with the use of intramedullary guides for distal femoral resection and surgeon-guided ligament balancing, was compared with a group using accelerometer-based navigation for distal femoral resection and surgeon-guided balancing (group 1), and one using navigated femoral resection and sensor-guided balancing (group 2). Primary outcome measures were Patient-Reported Outcomes Measurement Information System (PROMIS) and Knee injury and Osteoarthritis Outcome (KOOS) scores measured preoperatively and at six weeks and 12 months postoperatively. The position of the components and the mechanical axis of the limb were measured postoperatively. The postoperative range of motion (ROM), haematocrit change, and complications were also recorded. Results. There were 194 patients in the control group, 103 in group 1, and 74 in group 2. There were no significant differences in baseline demographics between the groups. Patients in group 2 had significantly higher baseline mental health subscores than control and group 1 patients (53.2 vs 50.2 vs 50.2, p = 0.041). There were no significant differences in any PROMs at six weeks or 12 months postoperatively (p > 0.05). There was no difference in the rate of manipulation under anaesthesia (MUA), complication rates, postoperative ROM, or blood loss. There were fewer mechanical axis outliers in groups 1 and 2 (25.2%, 14.9% respectively) versus control (28.4%), but this was not statistically significant (p = 0.10). Conclusion. The sequential addition of navigation of the distal femoral cut and sensor-guided ligament balancing did not improve short-term PROMs, radiological outcomes, or complication rates compared with conventional techniques. The costs of these added technologies may not be justified. Cite this article: Bone Joint J 2020;102-B(6 Supple A):24–30


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 680 - 687
1 Jul 2024
Mancino F Fontalis A Grandhi TSP Magan A Plastow R Kayani B Haddad FS

Aims

Robotic arm-assisted surgery offers accurate and reproducible guidance in component positioning and assessment of soft-tissue tensioning during knee arthroplasty, but the feasibility and early outcomes when using this technology for revision surgery remain unknown. The objective of this study was to compare the outcomes of robotic arm-assisted revision of unicompartmental knee arthroplasty (UKA) to total knee arthroplasty (TKA) versus primary robotic arm-assisted TKA at short-term follow-up.

Methods

This prospective study included 16 patients undergoing robotic arm-assisted revision of UKA to TKA versus 35 matched patients receiving robotic arm-assisted primary TKA. In all study patients, the following data were recorded: operating time, polyethylene liner size, change in haemoglobin concentration (g/dl), length of inpatient stay, postoperative complications, and hip-knee-ankle (HKA) alignment. All procedures were performed using the principles of functional alignment. At most recent follow-up, range of motion (ROM), Forgotten Joint Score (FJS), and Oxford Knee Score (OKS) were collected. Mean follow-up time was 21 months (6 to 36).


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 148 - 157
1 Feb 2023
Koster LA Rassir R Kaptein BL Sierevelt IN Schager M Nelissen RGHH Nolte PA

Aims

The primary aim of this study was to compare the migration of the femoral and tibial components of the cementless rotating platform Attune and Low Contact Stress (LCS) total knee arthroplasty (TKA) designs, two years postoperatively, using radiostereometric analysis (RSA) in order to assess the risk of the development of aseptic loosening. A secondary aim was to compare clinical and patient-reported outcome measures (PROMs) between the designs.

Methods

A total of 61 TKAs were analyzed in this randomized clinical RSA trial. RSA examinations were performed one day and three, six, 12, and 24 months postoperatively. The maximal total point motion (MPTM), translations, and rotations of the components were analyzed. PROMs and clinical data were collected preoperatively and at six weeks and three, six, 12, and 24 months postoperatively. Linear mixed effect modelling was used for statistical analyses.