Advertisement for orthosearch.org.uk
Results 1 - 20 of 8314
Results per page:
Bone & Joint Open
Vol. 2, Issue 7 | Pages 503 - 508
8 Jul 2021
Callaghan CJ McKinley JC

Aims. Arthroplasty has become increasingly popular to treat end-stage ankle arthritis. Iatrogenic posterior neurovascular and tendinous injury have been described from saw cuts. However, it is hypothesized that posterior ankle structures could be damaged by inserting tibial guide pins too deeply and be a potential cause of residual hindfoot pain. Methods. The preparation steps for ankle arthroplasty were performed using the Infinity total ankle system in five right-sided cadaveric ankles. All tibial guide pins were intentionally inserted past the posterior tibial cortex for assessment. All posterior ankles were subsequently dissected, with the primary endpoint being the presence of direct contact between the structure and pin. Results. All pin locations confer a risk of damaging posterior ankle structures, with all posterior ankle structures except the flexor hallucis longus tendon being contacted by at least one pin. Centrally-aligned transcortical pins were more likely to contact posteromedial neurovascular structures. Conclusion. These findings support our hypothesis that tibial guide pins pose a considerable risk of contacting and potentially damaging posterior ankle structures during ankle arthroplasty. This study is the first of its kind to assess this risk in the Infinity total ankle system. Cite this article: Bone Jt Open 2021;2(7):503–508


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 21 - 28
1 Jan 2023
Ndlovu S Naqshband M Masunda S Ndlovu K Chettiar K Anugraha A

Aims. Clinical management of open fractures is challenging and frequently requires complex reconstruction procedures. The Gustilo-Anderson classification lacks uniform interpretation, has poor interobserver reliability, and fails to account for injuries to musculotendinous units and bone. The Ganga Hospital Open Injury Severity Score (GHOISS) was designed to address these concerns. The major aim of this review was to ascertain the evidence available on accuracy of the GHOISS in predicting successful limb salvage in patients with mangled limbs. Methods. We searched electronic data bases including PubMed, CENTRAL, EMBASE, CINAHL, Scopus, and Web of Science to identify studies that employed the GHOISS risk tool in managing complex limb injuries published from April 2006, when the score was introduced, until April 2021. Primary outcome was the measured sensitivity and specificity of the GHOISS risk tool for predicting amputation at a specified threshold score. Secondary outcomes included length of stay, need for plastic surgery, deep infection rate, time to fracture union, and functional outcome measures. Diagnostic test accuracy meta-analysis was performed using a random effects bivariate binomial model. Results. We identified 1,304 records, of which six prospective cohort studies and two retrospective cohort studies evaluating a total of 788 patients were deemed eligible for inclusion. A diagnostic test meta-analysis conducted on five cohort studies, with 474 participants, showed that GHOISS at a threshold score of 14 has a pooled sensitivity of 93.4% (95% confidence interval (CI) 78.4 to 98.2) and a specificity of 95% (95% CI 88.7 to 97.9) for predicting primary or secondary amputations in people with complex lower limb injuries. Conclusion. GHOISS is highly accurate in predicting success of limb salvage, and can inform management and predict secondary outcomes. However, there is a need for high-quality multicentre trials to confirm these findings and investigate the effectiveness of the score in children, and in predicting secondary amputations. Cite this article: Bone Joint J 2023;105-B(1):21–28


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 71 - 71
1 Dec 2022
Pelletier-Roy R Dionne A Richard-Denis A Briand M Bourassa-Moreau E Mac-Thiong J
Full Access

Acute spinal cord injury (SCI) is most often secondary to trauma, and frequently presents with associated injuries. A neurological examination is routinely performed during trauma assessment, including through Advanced Trauma Life Support (ATLS). However, there is no standard neurological assessment tool specifically used for trauma patients to detect and characterize SCI during the initial evaluation. The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) is the most comprehensive and popular tool for assessing SCI, but it is not adapted to the acute trauma patients such that it is not routinely used in that setting. Therefore, the objective is to develop a new tool that can be used routinely in the initial evaluation of trauma patients to detect and characterize acute SCI, while preserving basic principles of the ISNCSCI. The completion rate of the ISCNSCI during the initial evaluation after an acute traumatic SCI was first estimated. Using a modified Delphi technique, we designed the Montreal Acute Classification of Spinal Cord Injuries (MAC-SCI), a new tool to detect and characterize the completeness (grade) and level of SCI in the polytrauma patient. The ability of the MAC-SCI to detect and characterize SCI was validated in a cohort of 35 individuals who have sustained an acute traumatic SCI. The completeness and neurological level of injury (NLI) were assessed by two independent assessors using the MAC-SCI, and compared to those obtained with the ISNCSCI. Only 33% of patients admitted after an acute traumatic SCI had a complete ISNCSCI performed at initial presentation. The MAC-SCI includes 53 of the 134 original elements of the ISNCSCI which is 60% less. There was a 100% concordance between the severity grade derived from the MAC-SCI and from the ISNCSCI. Concordance of the NLI within two levels of that obtained from the ISNCSCI was observed in 100% of patients with the MAC-SCI and within one level in 91% of patients. The ability of the MAC-SCI to discriminate between cervical (C0 to C7) vs. thoracic (T1 to T9) vs. thoraco-lumbar (T10 to L2) vs. lumbosacral (L3 to S5) injuries was 100% with respect to the ISNCSCI. The rate of completion of the ISNCSCI is low at initial presentation after an acute traumatic SCI. The MAC-SCI is a streamlined tool proposed to detect and characterize acute SCI in polytrauma patients, that is specifically adapted to the acute trauma setting. It is accurate for determining the completeness of the SCI and localize the NLI (cervical vs. thoracic vs. lumbar). It could be implemented in the initial trauma assessment protocol to guide the acute management of SCI patients


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 8 - 8
1 Dec 2022
Pelletier-Roy R Dionne A Richard-Denis A Briand M Bourassa-Moreau E Mac-Thiong J
Full Access

Acute spinal cord injury (SCI) is most often secondary to trauma, and frequently presents with associated injuries. A neurological examination is routinely performed during trauma assessment, including through Advanced Trauma Life Support (ATLS). However, there is no standard neurological assessment tool specifically used for trauma patients to detect and characterize SCI during the initial evaluation. The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) is the most comprehensive and popular tool for assessing SCI, but it is not adapted to the acute trauma patients such that it is not routinely used in that setting. Therefore, the objective is to develop a new tool that can be used routinely in the initial evaluation of trauma patients to detect and characterize acute SCI, while preserving basic principles of the ISNCSCI. The completion rate of the ISCNSCI during the initial evaluation after an acute traumatic SCI was first estimated. Using a modified Delphi technique, we designed the Montreal Acute Classification of Spinal Cord Injuries (MAC-SCI), a new tool to detect and characterize the completeness (grade) and level of SCI in the polytrauma patient. The ability of the MAC-SCI to detect and characterize SCI was validated in a cohort of 35 individuals who have sustained an acute traumatic SCI. The completeness and neurological level of injury (NLI) were assessed by two independent assessors using the MAC-SCI, and compared to those obtained with the ISNCSCI. Only 33% of patients admitted after an acute traumatic SCI had a complete ISNCSCI performed at initial presentation. The MAC-SCI includes 53 of the 134 original elements of the ISNCSCI which is 60% less. There was a 100% concordance between the severity grade derived from the MAC-SCI and from the ISNCSCI. Concordance of the NLI within two levels of that obtained from the ISNCSCI was observed in 100% of patients with the MAC-SCI and within one level in 91% of patients. The ability of the MAC-SCI to discriminate between cervical (C0 to C7) vs. thoracic (T1 to T9) vs. thoraco-lumbar (T10 to L2) vs. lumbosacral (L3 to S5) injuries was 100% with respect to the ISNCSCI. The rate of completion of the ISNCSCI is low at initial presentation after an acute traumatic SCI. The MAC-SCI is a streamlined tool proposed to detect and characterize acute SCI in polytrauma patients, that is specifically adapted to the acute trauma setting. It is accurate for determining the completeness of the SCI and localize the NLI (cervical vs. thoracic vs. lumbar). It could be implemented in the initial trauma assessment protocol to guide the acute management of SCI patients


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 43 - 43
1 Dec 2022
Pelletier-Roy R Dionne A Richard-Denis A Briand M Bourassa-Moreau E Mac-Thiong J
Full Access

Acute spinal cord injury (SCI) is most often secondary to trauma, and frequently presents with associated injuries. A neurological examination is routinely performed during trauma assessment, including through Advanced Trauma Life Support (ATLS). However, there is no standard neurological assessment tool specifically used for trauma patients to detect and characterize SCI during the initial evaluation. The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) is the most comprehensive and popular tool for assessing SCI, but it is not adapted to the acute trauma patients such that it is not routinely used in that setting. Therefore, the objective is to develop a new tool that can be used routinely in the initial evaluation of trauma patients to detect and characterize acute SCI, while preserving basic principles of the ISNCSCI. The completion rate of the ISCNSCI during the initial evaluation after an acute traumatic SCI was first estimated. Using a modified Delphi technique, we designed the Montreal Acute Classification of Spinal Cord Injuries (MAC-SCI), a new tool to detect and characterize the completeness (grade) and level of SCI in the polytrauma patient. The ability of the MAC-SCI to detect and characterize SCI was validated in a cohort of 35 individuals who have sustained an acute traumatic SCI. The completeness and neurological level of injury (NLI) were assessed by two independent assessors using the MAC-SCI, and compared to those obtained with the ISNCSCI. Only 33% of patients admitted after an acute traumatic SCI had a complete ISNCSCI performed at initial presentation. The MAC-SCI includes 53 of the 134 original elements of the ISNCSCI which is 60% less. There was a 100% concordance between the severity grade derived from the MAC-SCI and from the ISNCSCI. Concordance of the NLI within two levels of that obtained from the ISNCSCI was observed in 100% of patients with the MAC-SCI and within one level in 91% of patients. The ability of the MAC-SCI to discriminate between cervical (C0 to C7) vs. thoracic (T1 to T9) vs. thoraco-lumbar (T10 to L2) vs. lumbosacral (L3 to S5) injuries was 100% with respect to the ISNCSCI. The rate of completion of the ISNCSCI is low at initial presentation after an acute traumatic SCI. The MAC-SCI is a streamlined tool proposed to detect and characterize acute SCI in polytrauma patients, that is specifically adapted to the acute trauma setting. It is accurate for determining the completeness of the SCI and localize the NLI (cervical vs. thoracic vs. lumbar). It could be implemented in the initial trauma assessment protocol to guide the acute management of SCI patients


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1244 - 1251
1 Dec 2023
Plastow R Raj RD Fontalis A Haddad FS

Injuries to the quadriceps muscle group are common in athletes performing high-speed running and kicking sports. The complex anatomy of the rectus femoris puts it at greatest risk of injury. There is variability in prognosis in the literature, with reinjury rates as high as 67% in the severe graded proximal tear. Studies have highlighted that athletes can reinjure after nonoperative management, and some benefit may be derived from surgical repair to restore function and return to sport (RTS). This injury is potentially career-threatening in the elite-level athlete, and we aim to highlight the key recent literature on interventions to restore strength and function to allow early RTS while reducing the risk of injury recurrence. This article reviews the optimal diagnostic strategies and classification of quadriceps injuries. We highlight the unique anatomy of each injury on MRI and the outcomes of both nonoperative and operative treatment, providing an evidence-based management framework for athletes. Cite this article: Bone Joint J 2023;105-B(12):1244–1251


Bone & Joint Open
Vol. 3, Issue 9 | Pages 674 - 683
1 Sep 2022
Singh P Jami M Geller J Granger C Geaney L Aiyer A

Aims. Due to the recent rapid expansion of scooter sharing companies, there has been a dramatic increase in the number of electric scooter (e-scooter) injuries. Our purpose was to conduct a systematic review to characterize the demographic characteristics, most common injuries, and management of patients injured from electric scooters. Methods. We searched PubMed, EMBASE, Scopus, and Web of Science databases using variations of the term “electric scooter”. We excluded studies conducted prior to 2015, studies with a population of less than 50, case reports, and studies not focused on electric scooters. Data were analyzed using t-tests and p-values < 0.05 were considered significant. Results. We studied 5,705 patients from 34 studies. The mean age was 33.3 years (SD 3.5), and 58.3% (n = 3,325) were male. The leading mechanism of injury was falling (n = 3,595, 74.4%). Injured patients were more likely to not wear a helmet (n = 2,114; 68.1%; p < 0.001). The most common type of injury incurred was bony injuries (n = 2,761, 39.2%), of which upper limb fractures dominated (n = 1,236, 44.8%). Head and neck injuries composed 22.2% (n = 1,565) of the reported injuries, including traumatic brain injuries (n = 455; 2.5%), lacerations/abrasions/contusions (n = 500; 7.1%), intracerebral brain haemorrhages (n = 131; 1.9%), and concussions (n = 255; 3.2%). Standard radiographs comprised most images (n = 2,153; 57.7%). Most patients were treated and released without admission (n = 2,895; 54.5%), and 17.2% (n = 911) of injured patients required surgery. Qualitative analyses of the cost of injury revealed that any intoxication was associated with higher billing costs. Conclusion. The leading injuries from e-scooters are upper limb fractures. Falling was the leading mechanism of injury, and most patients did not wear a helmet. Future research should focus on injury characterization, treatment, and cost. Cite this article: Bone Jt Open 2022;3(9):674–683


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 723 - 728
1 Jul 2023
Raj RD Fontalis A Grandhi TSP Kim WJ Gabr A Haddad FS

There is a disparity in sport-related injuries between sexes, with females sustaining non-contact musculoskeletal injuries at a higher rate. Anterior cruciate ligament ruptures are between two and eight times more common than in males, and females also have a higher incidence of ankle sprains, patellofemoral pain, and bone stress injuries. The sequelae of such injuries can be devastating to an athlete, resulting in time out of sport, surgery, and the early onset of osteoarthritis. It is important to identify the causes of this disparity and introduce prevention programmes to reduce the incidence of these injuries. A natural difference reflects the effect of reproductive hormones in females, which have receptors in certain musculoskeletal tissues. Relaxin increases ligamentous laxity. Oestrogen decreases the synthesis of collagen and progesterone does the opposite. Insufficient diet and intensive training can lead to menstrual irregularities, which are common in female athletes and result in injury, whereas oral contraception may have a protective effect against certain injuries. It is important for coaches, physiotherapists, nutritionists, doctors, and athletes to be aware of these issues and to implement preventive measures. This annotation explores the relationship between the menstrual cycle and orthopaedic sports injuries in pre-menopausal females, and proposes recommendations to mitigate the risk of sustaining these injuries. Cite this article: Bone Joint J 2023;105-B(7):723–728


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 953 - 960
1 Sep 2023
Cance N Erard J Shatrov J Fournier G Gunst S Martin GL Lustig S Servien E

Aims. The aim of this study was to evaluate the association between chondral injury and interval from anterior cruciate ligament (ACL) tear to surgical reconstruction (ACLr). Methods. Between January 2012 and January 2022, 1,840 consecutive ACLrs were performed and included in a single-centre retrospective cohort. Exclusion criteria were partial tears, multiligament knee injuries, prior ipsilateral knee surgery, concomitant unicompartmental knee arthroplasty or high tibial osteotomy, ACL agenesis, and unknown date of tear. A total of 1,317 patients were included in the final analysis, with a median age of 29 years (interquartile range (IQR) 23 to 38). The median preoperative Tegner Activity Score (TAS) was 6 (IQR 6 to 7). Patients were categorized into four groups according to the delay to ACLr: < three months (427; 32%), three to six months (388; 29%), > six to 12 months (248; 19%), and > 12 months (254; 19%). Chondral injury was assessed during arthroscopy using the International Cartilage Regeneration and Joint Preservation Society classification, and its association with delay to ACLr was analyzed using multivariable analysis. Results. In the medial compartment, delaying ACLr for more than 12 months was associated with an increased rate (odds ratio (OR) 1.93 (95% confidence interval (CI) 1.27 to 2.95); p = 0.002) and severity (OR 1.23 (95% CI 1.08 to 1.40); p = 0.002) of chondral injuries, compared with < three months, with no association in patients aged > 50 years old. No association was found for shorter delays, but the overall dose-effect analysis was significant for the rate (p = 0.015) and severity (p = 0.026) of medial chondral injuries. Increased TAS was associated with a significantly reduced rate (OR 0.88 (95% CI 0.78 to 0.99); p = 0.036) and severity (OR 0.96 (95% CI 0.92 to 0.99); p = 0.017) of medial chondral injuries. In the lateral compartment, no association was found between delay and chondral injuries. Conclusion. Delay was associated with an increased rate and severity of medial chondral injuries in a dose-effect fashion, in particular for delays > 12 months. Younger patients seem to be at higher risk of chondral injury when delaying surgery. The timing of ACLr should be optimally reduced in this population. Cite this article: Bone Joint J 2023;105-B(9):953–960


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 898 - 906
1 Sep 2024
Kayani B Wazir MUK Mancino F Plastow R Haddad FS

Aims. The primary objective of this study was to develop a validated classification system for assessing iatrogenic bone trauma and soft-tissue injury during total hip arthroplasty (THA). The secondary objective was to compare macroscopic bone trauma and soft-tissues injury in conventional THA (CO THA) versus robotic arm-assisted THA (RO THA) using this classification system. Methods. This study included 30 CO THAs versus 30 RO THAs performed by a single surgeon. Intraoperative photographs of the osseous acetabulum and periacetabular soft-tissues were obtained prior to implantation of the acetabular component, which were used to develop the proposed classification system. Interobserver and intraobserver variabilities of the proposed classification system were assessed. Results. The BOne trauma and Soft-Tissue Injury classification system in total Hip arthroplasty (BOSTI Hip) grades osseous acetabular trauma and periarticular muscle damage during THA. The classification system has an interclass correlation coefficient of 0.90 (95% CI 0.86 to 0.93) for interobserver agreement and 0.89 (95% CI 0.84 to 0.93) for intraobserver agreement. RO THA was associated with improved BOSTI Hip scores (p = 0.002) and more pristine osseous surfaces in the anterior superior (p = 0.001) and posterior superior (p < 0.001) acetabular quadrants compared with CO THA. There were no differences between the groups in relation to injury to the gluteus medius (p = 0.084), obturator internus (p = 0.241), piriformis (p = 0.081), superior gamellus (p = 0.116), inferior gamellus (p = 0.132), quadratus femoris (p = 0.208), and vastus lateralis (p = 0.135), but overall combined muscle injury was reduced in RO THA compared with CO THA (p = 0.023). Discussion. The proposed BOSTI Hip classification provides a reproducible grading system for stratifying iatrogenic bone trauma and soft-tissue injury during THA. RO THA was associated with improved BOSTI Hip scores, more pristine osseous acetabular surfaces, and reduced combined periarticular muscle injury compared with CO THA. Further research is required to understand if these intraoperative findings translate to differences in clinical outcomes between the treatment groups. Cite this article: Bone Joint J 2024;106-B(9):898–906


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 11 - 16
1 May 2024
Fujita J Doi N Kinoshita K Seo H Doi K Yamamoto T

Aims. Lateral femoral cutaneous nerve (LFCN) injury is a complication after periacetabular osteo-tomy (PAO) using an anterior approach, which might adversely affect the outcome. However, no prospective study has assessed the incidence and severity of this injury and its effect on the clinical outcomes over a period of time for longer than one year after PAO. The aim of this study was to assess the incidence and severity of the symptoms of LFCN injury for ≥ three years after PAO and report its effect on clinical outcomes. Methods. A total of 40 hips in 40 consecutive patients who underwent PAO between May 2016 and July 2018 were included in the study, as further follow-up of the same patients from a previous study. We prospectively evaluated the incidence, severity, and area of symptoms following LFCN injury. We also recorded the clinical scores at one year and ≥ three years postoperatively using the 36-Item Short Form Health Survey (SF-36) and Japanese Orthopaedic Association Hip Disease Evaluation Questionnaire (JHEQ) scores. Results. A total of 20 patients (50%) had symptoms of a LFCN injury at one year after PAO. At ≥ three years postoperatively, the symptoms had completely resolved in seven of these patients and 13 (33%) had persistent symptoms. The severity and area of symptoms did not significantly differ between one and ≥ three years postoperatively. The JHEQ showed significant differences in the patient satisfaction and mental scores between those with and those without sypmtoms of LFCN injury at ≥ three years postoperatively, while there was no significant difference in the mean SF-36 scores. Conclusion. The incidence of LFCN injury after PAO using an anterior approach is high. The outcome of PAO, ≥ three years postoperatively, is poorer in patients with persistent symptoms from a perioperative LFCN injury, in that patient satisfaction and mental health scores are adversely affected. Cite this article: Bone Joint J 2024;106-B(5 Supple B):11–16


Bone & Joint Open
Vol. 3, Issue 11 | Pages 859 - 866
4 Nov 2022
Diesel CV Guimarães MR Menegotto SM Pereira AH Pereira AA Bertolucci LH Freitas EC Galia CR

Aims. Our objective was describing an algorithm to identify and prevent vascular injury in patients with intrapelvic components. Methods. Patients were defined as at risk to vascular injuries when components or cement migrated 5 mm or more beyond the ilioischial line in any of the pelvic incidences (anteroposterior and Judet view). In those patients, a serial investigation was initiated by a CT angiography, followed by a vascular surgeon evaluation. The investigation proceeded if necessary. The main goal was to assure a safe tissue plane between the hardware and the vessels. Results. In ten at-risk patients undergoing revision hip arthroplasty and submitted to our algorithm, six were recognized as being high risk to vascular injury during surgery. In those six high-risk patients, a preventive preoperative stent was implanted before the orthopaedic procedure. Four patients needed a second reinforcing stent to protect and to maintain the vessel anatomy deformed by the intrapelvic implants. Conclusion. The evaluation algorithm was useful to avoid blood vessels injury during revision total hip arthroplasty in high-risk patients. Cite this article: Bone Jt Open 2022;3(11):859–866


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_12 | Pages 8 - 8
10 Jun 2024
Airey G Aamir J Chapman J Tanaka H Elbannan M Singh A Mangwani J Kyaw H Jeyaseelan L Mason L
Full Access

Background. Research on midfoot injuries have primarily concentrated on the central column and the Lisfranc ligament without amassing evidence on lateral column injuries. Lateral column injuries have historically been treated with Kirschner wire fixation when encountered. Objective. Our aim in this study was to analyse lateral column injuries to the midfoot, their method of treatment and the radiological lateral column outcomes. Our nul hypothesis being that fixation is required to obtain and maintain lateral column alignment. Methods. Data was retrospectively collected from four centres on surgically treated midfoot fracture dislocations between 2011 and 2021. Radiographs were analysed using departmental PACS. All statistics was performed using SPSS 26. Results. A total of 235 cases were diagnosed as having a lateral column injury out of the 409 cases included. On cross tabulation, there was a significant association with having a central column injury (234/235, p<.001) and 70% of cases (166/235) also had an additional medial column injury. Of the 235 lateral column injuries, data was available regarding fixation radiographic alignment on 222 cases. There were 44 cases which underwent Kirschner wire fixation, 23 plate fixations and 3 screw fixations. Lateral column alignment loss was seen in 2.84% (4/141) of those which didn't undergo fixation, 13.64% (6/44) which underwent K wires, and 0 % in those fixed by screws or K wires. Conclusion. Lateral column injury occurs in over half of midfoot fractures in this study. It rarely occurs alone and is most commonly related to three column injuries. Nevertheless, following stabilisation of the central column, additional fixation of injuries to the lateral column do not appear beneficial. The use of a bridge plate to fix the central column appears protective and purely ligamentous injury was a higher risk than an injury that included the bone


Bone & Joint Open
Vol. 3, Issue 8 | Pages 623 - 627
8 Aug 2022
Francis JL Battle JM Hardman J Anakwe RE

Aims. Fractures of the distal radius are common, and form a considerable proportion of the trauma workload. We conducted a study to examine the patterns of injury and treatment for adult patients presenting with distal radius fractures to a major trauma centre serving an urban population. Methods. We undertook a retrospective cohort study to identify all patients treated at our major trauma centre for a distal radius fracture between 1 June 2018 and 1 May 2021. We reviewed the medical records and imaging for each patient to examine patterns of injury and treatment. We undertook a binomial logistic regression to produce a predictive model for operative fixation or inpatient admission. Results. Overall, 571 fractures of the distal radius were treated at our centre during the study period. A total of 146 (26%) patients required an inpatient admission, and 385 surgical procedures for fractures of the distal radius were recorded between June 2018 and May 2021. The most common mechanism of injury was a fall from a height of one metre or less. Of the total fractures, 59% (n = 337) were treated nonoperatively, and of those patients treated with surgery, locked anterior-plate fixation was the preferred technique (79%; n = 180). Conclusion. The epidemiology of distal radius fractures treated at our major trauma centre replicated the classical bimodal distribution described in the literature. Patient age, open fractures, and fracture classification were factors correlated with the decision to treat the fracture operatively. While most fractures were treated nonoperatively, locked anterior-plate fixation remains the predominant method of fixation for fractures of the distal radius; this is despite questions and continued debate about the best method of surgical fixation for these injuries. Cite this article: Bone Jt Open 2022;3(8):623–627


Bone & Joint Open
Vol. 3, Issue 11 | Pages 913 - 920
18 Nov 2022
Dean BJF Berridge A Berkowitz Y Little C Sheehan W Riley N Costa M Sellon E

Aims. The evidence demonstrating the superiority of early MRI has led to increased use of MRI in clinical pathways for acute wrist trauma. The aim of this study was to describe the radiological characteristics and the inter-observer reliability of a new MRI based classification system for scaphoid injuries in a consecutive series of patients. Methods. We identified 80 consecutive patients with acute scaphoid injuries at one centre who had presented within four weeks of injury. The radiographs and MRI scans were assessed by four observers, two radiologists, and two hand surgeons, using both pre-existing classifications and a new MRI based classification tool, the Oxford Scaphoid MRI Assessment Rating Tool (OxSMART). The OxSMART was used to categorize scaphoid injuries into three grades: contusion (grade 1); unicortical fracture (grade 2); and complete bicortical fracture (grade 3). Results. In total there were 13 grade 1 injuries, 11 grade 2 injuries, and 56 grade 3 injuries in the 80 consecutive patients. The inter-observer reliability of the OxSMART was substantial (Kappa = 0.711). The inter-observer reliability of detecting an obvious fracture was moderate for radiographs (Kappa = 0.436) and MRI (Kappa = 0.543). Only 52% (29 of 56) of the grade 3 injuries were detected on plain radiographs. There were two complications of delayed union, both of which occurred in patients with grade 3 injuries, who were promptly treated with cast immobilization. There were no complications in the patients with grade 1 and 2 injuries and the majority of these patients were treated with early mobilization as pain allowed. Conclusion. This MRI based classification tool, the OxSMART, is reliable and clinically useful in managing patients with acute scaphoid injuries. Cite this article: Bone Jt Open 2022;3(11):913–920


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 42 - 42
7 Nov 2023
Simmons D Robertson A Milner B
Full Access

Child abuse is an essential discussion within society and poses many challenges. The international literature describes patient and family based risk factors and suspicious injuries. We have created a protocol for the identification and investigation of children with suspected non-accidental injuries. The paediatric orthopaedic ward experiences many children being delayed in the ward once fit for discharge. This study aimed to quanitify those delayed discharges and describe the demographics and risk factors for abuse within the local population. After obtaining ethics clearance, we conducted a retrospective review of records from the Teddy Bear Clinic, as well as admission records. The study examined demographic characteristics, family, injury characteristics and referral to Child Welfare. The delay of discharge from hospital was quantified and was compared to those characteristics. Records were collected from 1 January 2015 to 31 December 2021. Seventy-nine complete records were included. There were 40 males and 39 females with an average age of 20 months. 75.9% were under 36 months old. 94.1% of the cases sustained lower limb fractures. Fifty-two cases had a delayed discharge. The delay ranged from 1 to 233 days. There was an association between an age less than 36 months and delayed discharge. There were no significant correlations between caregiver characteristics and delayed discharge. The later the completion of investigations, the more likely there would be a delay. There was also a significant correlation between referral to Child Welfare and delayed discharge. Children under 36 months on this remain at highest risk for non-accidental injury. Delayed discharge was associated with age less than 36 months, upper limb fractures and referral to Child Welfare. Despite the delayed discharge, most children returned to the same home environments


Bone & Joint Research
Vol. 12, Issue 3 | Pages 212 - 218
9 Mar 2023
Buchalter DB Kirby DJ Anil U Konda SR Leucht P

Aims. Glucose-insulin-potassium (GIK) is protective following cardiac myocyte ischaemia-reperfusion (IR) injury, however the role of GIK in protecting skeletal muscle from IR injury has not been evaluated. Given the similar mechanisms by which cardiac and skeletal muscle sustain an IR injury, we hypothesized that GIK would similarly protect skeletal muscle viability. Methods. A total of 20 C57BL/6 male mice (10 control, 10 GIK) sustained a hindlimb IR injury using a 2.5-hour rubber band tourniquet. Immediately prior to tourniquet placement, a subcutaneous osmotic pump was placed which infused control mice with saline (0.9% sodium chloride) and treated mice with GIK (40% glucose, 50 U/l insulin, 80 mEq/L KCl, pH 4.5) at a rate of 16 µl/hr for 26.5 hours. At 24 hours following tourniquet removal, bilateral (tourniqueted and non-tourniqueted) gastrocnemius muscles were triphenyltetrazolium chloride (TTC)-stained to quantify percentage muscle viability. Bilateral peroneal muscles were used for gene expression analysis, serum creatinine and creatine kinase activity were measured, and a validated murine ethogram was used to quantify pain before euthanasia. Results. GIK treatment resulted in a significant protection of skeletal muscle with increased viability (GIK 22.07% (SD 15.48%)) compared to saline control (control 3.14% (SD 3.29%)) (p = 0.005). Additionally, GIK led to a statistically significant reduction in gene expression markers of cell death (CASP3, p < 0.001) and inflammation (NOS2, p < 0.001; IGF1, p = 0.007; IL-1β, p = 0.002; TNFα, p = 0.012), and a significant reduction in serum creatine kinase (p = 0.004) and creatinine (p < 0.001). GIK led to a significant reduction in IR-related pain (p = 0.030). Conclusion. Systemic GIK infusion during and after limb ischaemia protects murine skeletal muscle from cell death, kidneys from reperfusion metabolites, and reduces pain by reducing post-ischaemic inflammation. Cite this article: Bone Joint Res 2023;12(3):212–218


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 28 - 28
17 Nov 2023
Morris T Fouweather M Walshaw T Wei N Baldock T Eardley W
Full Access

Abstract. Objectives. The need to accurately forecast the injury burden has never been higher. With an aging, ever expanding trauma population and less than half of the beds available compared to 1990, the National Health Service (NHS) is stretched to breaking point1,2. Resultantly, we aimed to determine whether it is possible to predict the proportionality of injuries treated operatively within orthopaedic departments based on their number of Neck of Femur fracture (NOF) patients reported both in our study and the National Hip Fracture Database (NHFD). Methods. We utilised the ORthopaedic trauma hospital outcomes - Patient operative delays (ORTHOPOD) dataset of 22,585 trauma patients across the four countries of the United Kingdom (UK) admitted to 83 hospitals between 22/08/22 – 16/10/22. This dataset had two arms: arm one was assessing the caseload and theatre capacity, arm two assessed the patient, injury and management demographics. Results. Our results complied with the data reported to the NHFD in over 80% of cases for both the 2022 and five-year average reported numbers. More operations were performed for elderly hip fractures alone than for the combined totals of the next four most common fractures: ankle, distal radius, tibial shaft and forearm (6387 vs 5922). Conversely, 10 out of the 13 fracture types were not encountered by at least one hospital and 93% of hospitals encountered less than 2 fractures of a certain type.60% of trauma is treated within Trauma Units (TUs) however, per unit, Major Trauma Centres (MTCs) treat approximately 43% more patients. Similarly, 11 out of the 14 fracture types examined presented more frequently to a MTC however 3 of the most common fractures had a preponderance for TUs (elderly hip, distal radius and forearm fractures). After excluding NOF, lower limb fractures accounted for approximately 57% of fractures in all countries and ankle and distal radius fracture combined comprised more than 50% in 74% of regions. There were few outliers across the study regarding number of fractures treated by a hospital with tibial shaft fractures demonstrating the highest number of outliers with 4. Conclusions. The number of hip fractures seen on average by an individual unit remains relatively consistent as does the regional variation of any given fracture; resultantly, it is possible to predict injury proportionality based off a unit's hip fracture numbers. This powerful tool could transform both resource allocation and recruitment. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 182 - 188
1 Feb 2024
Gallego JA Rotman D Watts AC

Aims. Acute and chronic injuries of the interosseus membrane can result in longitudinal instability of the forearm. Reconstruction of the central band of the interosseus membrane can help to restore biomechanical stability. Different methods have been used to reconstruct the central band, including tendon grafts, bone-ligament-bone grafts, and synthetic grafts. This Idea, Development, Exploration, Assessment, and Long-term (IDEAL) phase 1 study aims to review the clinical results of reconstruction using a synthetic braided cross-linked graft secured at either end with an Endobutton to restore the force balance between the bones of the forearm. Methods. An independent retrospective review was conducted of a consecutive series of 21 patients with longitudinal instability injuries treated with anatomical central band reconstruction between February 2011 and July 2019. Patients with less than 12 months’ follow-up or who were treated acutely were excluded, leaving 18 patients in total. Preoperative clinical and radiological assessments were compared with prospectively gathered data using range of motion and the abbreviated version of the Disabilities of the Arm, Shoulder and Hand questionnaire (QuickDASH) functional outcome score. Results. Of the 18 patients (nine male, nine female) who met the inclusion criteria, the median follow-up was 8.5 years (interquartile range (IQR) 5.6 to 10). Their mean age was 49 years (SD 11). The mean extension improved significantly from 38° (SD 15°) to 24° (SD 9°) (p = 0.027), with a mean flexion-extension arc change from 81° (SD 27°) to 93° (SD 30°) (p = 0.172) but with no forearm rotational improvement (p = 0.233) at latest follow-up. The QuickDASH functional score improved significantly from 80 (SD 14) to 52 (SD 26) following reconstruction (p = 0.031), but generally the level of disability remains high. Radiological assessment showed no progression of proximal migration of the radius, with a stable interbutton distance and ulnar variance from immediate postoperative radiograph to the latest follow-up. Conclusion. Central band interosseus membrane reconstruction using a synthetic braided cross-linked graft can improve patient-rated arm function and range of motion, but significant functional deficits remain in patients with chronic injuries. Cite this article: Bone Joint J 2024;106-B(2):182–188


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 1008 - 1014
1 Sep 2024
Prijs J Rawat J ten Duis K Assink N Harbers JS Doornberg JN Jadav B Jaarsma RL IJpma FFA

Aims. Paediatric triplane fractures and adult trimalleolar ankle fractures both arise from a supination external rotation injury. By relating the experience of adult to paediatric fractures, clarification has been sought on the sequence of injury, ligament involvement, and fracture pattern of triplane fractures. This study explores the similarities between triplane and trimalleolar fractures for each stage of the Lauge-Hansen classification, with the aim of aiding reduction and fixation techniques. Methods. Imaging data of 83 paediatric patients with triplane fractures and 100 adult patients with trimalleolar fractures were collected, and their fracture morphology was compared using fracture maps. Visual fracture maps were assessed, classified, and compared with each other, to establish the progression of injury according to the Lauge-Hansen classification. Results. Four stages of injury in triplane fractures, resembling the adult supination external rotation Lauge-Hansen stages, were observed. Stage I consists of rupture of the anterior syndesmosis or small avulsion of the anterolateral tibia in trimalleolar fractures, and the avulsion of a larger Tillaux fragment in triplanes. Stage II is defined as oblique fracturing of the fibula at the level of the syndesmosis, present in all trimalleolar fractures and in 30% (25/83) of triplane fractures. Stage III is the fracturing of the posterior malleolus. In trimalleolar fractures, the different Haraguchi types can be discerned. In triplane fractures, the delineation of the posterior fragment has a wave-like shape, which is part of the characteristic Y-pattern of triplane fractures, originating from the Tillaux fragment. Stage IV represents a fracture of the medial malleolus, which is highly variable in both the trimalleolar and triplane fractures. Conclusion. The paediatric triplane and adult trimalleolar fractures share common features according to the Lauge-Hansen classification. This highlights that the adolescent injury arises from a combination of ligament traction and a growth plate in the process of closing. With this knowledge, a specific sequence of reduction and optimal screw positions are recommended. Cite this article: Bone Joint J 2024;106-B(9):1008–1014