Aims. Pellino1 (Peli1) has been reported to regulate various
Aims. The present study aimed to investigate whether patients with
Accurate differentiation between loosening and infection is very important in the optimal treatment of patients with painful lower-limb arthroplasty. The distinction is very difficult, time consuming and expensive. FDG-PET has shown to be a powerful tool in the diagnosis of infection and inflammation. FDG-PET is particularly valuable in the evaluation of chronic osteomyelitis, sarcoidosis, fever of unknown origin, the acquired immunodeficiency syndrome and infected prostheses and also holds promise to monitor disease activity and response to therapy. FDG-PET is an effective modality in the diagnosis of infection associated with lower-limb arthroplasty. Overall sensitivities range from 90% to 100% and specificities of 81% to 89% have been reported. In contrast to conventional nuclear medicine and radiologic techniques (Particularly MRI), PET is not affected by metal implants used for orthopedic procedures. Bone marrow uptake is minimal in these patients who usually are elderly. Furthermore, better spatial resolution of PET compared with conventional nuclear medicine modalities allows the detection of small and subtle lesions that can go unnoticed with other tecniques. When PET imaging is used to diagnose periprosthetic infection, certain cautions should be taken into account when interpreting the scans. The criteria to be used to distinguish infection from aseptic loosening should be clearly defined. Increased FDG uptake must be present along the interface between prostheses and bone to suggest infection. Often a significantly increased FDG uptake is found around the neck and/or head portion of the prosthesis following arthroplasty. Nevertheless, without increased FDG uptake along the interface between bone and prosthesis, a diagnosis of infection can not be made with confidence. For knee prostheses this diagnostic criterion is not as optimal as in the hip prostheses resulting in more false-positive results. Surgical intervention usually results in increased FDG uptake for up to 6 months. However, nonspecific increased FDG uptake caused by uncomplicated arthroplasty persists for an extended period of time. As a metabolic modality, FDG-PET is superior to anatomic imaging techniques in the diagnosis and treatment of patients with prosthetic infections and inflammations that rely on the presence of hyperemia and increased perfusion. Novel PET tracers are being tested that may further enhance the role of this technique.
Aims. Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic
Aims. CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and
Monomeric C reactive protein (mCRP) presents important proinflammatory effects in endothelial cells, leukocytes, or chondrocytes. However, CRP in its pentameric form exhibits weak anti-inflammatory activity. It is used as a biomarker to follow severity and progression in infectious or
Osteoarthritis (OA) is an
Background. The diagnosis of periprosthetic joint infection (PJI) remains a challenge in clinical practice and the analysis of synovial fluid (SF) is a useful diagnostic tool. Recently, two synovial biomarkers (leukocyte esterase (LE) strip test, alpha-defensin (AD)) have been introduced into the MSIS (MusculoSkeletal Infection Society) algorithm for the diagnosis of PJI. AD, although promising with high sensitivity and specificity, remains expensive. Calprotectin is another protein released upon activation of articular neutrophils. The determination of calprotectin and joint CRP is feasible in a routine laboratory practice with low cost. Purpose. Our objective was to evaluate different synovial biomarkers (calprotectin, LE, CRP) for the diagnosis of PJI. Methods. In this monocentric study, we collected SF from hip, knee, ankle and shoulder joints of 42 patients who underwent revision or puncture for diagnostic purposes. Exclusion criteria included a joint surgery in the previous 3 months and a diagnosis of a systemic
Introduction. Tendinopathies represent a significant health burden, causing inflammation, pain, and reducing quality of life. The pivotal role of macrophages (Mφ) characterized by their ability to differentiate into proinflammatory (M1) or anti-inflammatory (M2) phenotypes depending on the microenvironment, has gained significant interest in tissue inflammation research. Additionally, existing literature states that the interplay between tenocytes and immune cells during inflammation involves unidentified soluble factors (SF). This study aimed to investigate the effect of extracellular vesicles (EVs) and SF derived from polarized Mφ on tendon cells to provide deeper insights of their potential therapeutic applications in the context of inflammation. Method. Human monocytes were isolated from blood donor buffy coats and differentiated into M1, M2, and hybrid M1/M2 phenotypes. Subsequently, EVs were isolated from the conditioned media from polarized Mφ and comprehensively characterized. In parallel, the elution media containing SF was collected. Furthermore, the EVs and SF were released independently onto tenocytes from human donors, previously induced with IL-1β to simulate an inflammatory environment. Finally, mRNA levels of tendon-related markers were evaluated by qPCR after the exposure to these EVs and SF. Result. Notably, the study found that the viability of the cells was not affected by the exposure to EVs nor SF, indicating their potential safety for therapeutic use. Moreover, the mRNA content of tendon-derived cells was evaluated following exposure to Mφ-EVs and SF revealing alterations in gene expression. Interestingly, a significant increase in the expression of tenomodulin was observed in tendon cells treated with Mφ-EVs. Conclusion. These results mark a significant advancement in understanding the interplay between Mφ and tenocytes at a molecular level. To fully understand the underlying causes of Mφ-EVs effects, and its potential clinical application in tendon
Aim. The cut-off values for synovial fluid leukocyte count and neutrophils differential (%PMN) for differentiating aseptic from septic failure in total knee arthroplasties were already defined in the past. Our goal was to determine the cut-off values for synovial fluid leukocyte count and %PMN in failed total hip arthroplasties (THA). Method. Patients undergoing revision THA were prospectively included. In perioperative assessment phase, synovial fluid leukocyte count and %PMN were determined. During the surgery, at least 4 intraoperative samples for microbiological and one for histopathological analysis were obtained. Infection was defined as presence of sinus tract, inflammation in histopathological samples, and ≥2 tissue and/or synovial fluid samples growing the same microorganism. Exclusion criteria were systemic
In-vitro models of disease are valuable tools for studying disease and analysing response to therapeutics. Recently, advances in patient-derived organoid (PDO) models have been shown to faithfully recapitulate structure, function, and therapeutic response for a wide range of tissues. Frozen shoulder is a rare example of a chronic
Aims. Inflammatory response plays a pivotal role in the pathophysiological process of intervertebral disc degeneration (IDD). A20 (also known as tumour necrosis factor alpha-induced protein 3 (TNFAIP3)) is a ubiquitin-editing enzyme that restricts nuclear factor-kappa B (NF-κB) signalling. A20 prevents the occurrence of multiple
Osteochondrosis (OC) is a common joint disease that affects developing cartilage and subchondral bone in humans, and in multiple animal species including horses. It is an idiopathic localized joint disorder characterized by focal chondronecrosis and retention of growing cartilage that can lead to the formation of fissures, subchondral bone cysts or intra-articular fragments. OC is considered a complex multifactorial disease with chondrocyte biogenesis impairment mainly due to biochemical and genetic factors. Likewise, the molecular events involved in the OC are not fully understood. Moreover, the OC pathogenesis seems to be shared across species. In particular, equine OC and human juvenile OC share some symptoms, predilection sites and clinical presentation. In this study, by using the label-free mass spectrometry approach, proteome of chondrocytes isolated from equine OC fragments has been analysed in order to clarify some aspects of cell metabolism impairment occurring in OC. Equine chondrocytes isolated from 7 healthy articular cartilages (CTRL) and from 7 osteochondritic fragments (OC) (both obtained from metacarpo/metatarsophalangeal joints) were analysed. Proteins were extracted using urea and ammonium bicarbonate buffer, reduced, alkylated and digested with Trypsin/Lys-C Mix. Peptides were analysed using Q Exactive UHMR Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Scientific). All mass spectra of label-free samples analysed was set up to search against SwissProt human database (Homo sapiens) and SwissProt horse database (Equus caballus). One-way ANOVA was used for hypothesis testing. Proteins with a ≥1.5 fold change and with a FDR adjusted p value of ≤0.05 were defined as differentially expressed. Statistical analysis evidenced 41 proteins up-regulated in OC while 18 were down-regulated with respect to the CTRL. Functional analysis showed that up-regulated proteins in OC were related to extracellular matrix degradation, lysosome, apoptotic execution phase, unfolded protein response, hyaluronan and keratan sulfate degradation, oxidative stress response and negative regulation of BMP signalling pathway. The down-regulated proteins were associated with endochondral ossification, vitamin D in
Sarcopenia is a progressive and generalized skeletal muscle disorder that involves loss of muscle mass and function. It is associated with increased adverse outcomes including falls, functional decline, frailty and mortality and affects 65% of people over the age of 65 more than half of people aged 80 and above. The factors that cause and worsen sarcopenia are categorised into two groups. The primary aetiological factor is ageing and the secondary factors include disease, physical inactivity, and poor nutrition. Sarcopenia is considered to be ‘primary' (or age-related) when no other specific cause is evident. However, a number of ‘secondary' factors may be present in addition to ageing. Sarcopenia can occur secondary to a systemic or
For many decades, we have viewed osteoarthritis (OA) as a homogeneous disease characterised by “wear and tear”. However, this view has been challenged recently and it is now clear that OA is a heterogeneous and low-grade
Introduction. Intraoperative periprosthetic femoral fractures (IOPFF) lead to reduced implant survival. A deeper understanding of predictors enables surgeons to modify techniques and patient selection to reduce the risk of IOPFF. The aim of this study was to estimate predictors of IOPFF and each anatomical subtype (calcar crack, trochanteric fracture, femoral shaft fracture) during primary THA. Methods. This retrospective cohort study included 793823 primary THAs between 2004 and 2016. Relative risks for patient, surgical and implant factors are estimated for any IOPFF fracture and for all anatomical subtypes of IOPFF. Results. Patient factors significantly increasing the risk of fracture were: female gender, American Association of Anaesthesiologists (ASA) grade 3 to 5, pre-operative diagnosis including: avascular necrosis of the hip (AVN), previous trauma,
Several studies explored the biological effects of low frequency low energy pulsed electromagnetic fields (PEMFs, Igea Biophysics Laboratory, Carpi, Italy) on human body reporting different functional changes. In the orthopedic field, PEMFs have been shown to be effective in enhancing endogenous bone and osteochondral repair, incrementing bone mineral density, accelerating the process of osteogenic differentiation and limiting cartilage damage. Much research activity has focused on the mechanisms of interaction between PEMFs and membrane receptors such as adenosine receptors (ARs). In particular, PEMF exposure mediates a significant upregulation of A. 2A. and A. 3. ARs expressed in various cells or tissues involving a reduction of most of the pro-inflammatory cytokines. In tissue engineering for cartilage repair a double role for PEMFs could be hypothesized: in vitro by stimulating cell proliferation, colonization of the scaffold and production of tissue matrix; in vivo after surgical implantation of the construct by favoring the anabolic activities of the implanted cells and surrounding tissues and protecting the construct from the catabolic effects of inflammation. Of particular interest is the observation that PEMFs, through the increase of ARs, enhance the working efficiency of the endogenous modulator adenosine, producing a more physiological effect than the use of exogenous drugs. This observation suggests the hypothesis that PEMFs could be considered a non-invasive treatment with a low impact on daily life. In conclusion, PEMFs represent an important approach in the pharmacological field providing excellent therapeutic results in various
Aim. A large body of evidence is emerging to implicate that dysregulation of the gut microbiome (dysbiosis) increases the risk of surgical site infections. Gut dysbiosis is known to occur in patients with
Inflammation has been associated with immunological dysfunctions and chronic
Aim. Previous studies had indicated that interleukin-1 beta (IL-1β) gene single nucleotide polymorphisms (SNPs) associate with different