Introduction. In total hip arthroplasty, a high radiographic
Introduction. Acetabular component orientation is an important determinant of outcome following total hip arthroplasty (THA). Although surgeons aim to achieve optimal cup orientation, many studies demonstrate their inability to consistently achieve this. Factors that contribute are pelvic orientation and the surgeon's ability to correctly orient the cup at implantation. The goal of this study was to determine the accuracy with which surgeons can achieve cup orientation angles. Methods. In this in vitro study using a calibrated left and right sawbone hemipelvis model, participants (n=10) were asked to place a cup mounted on its introducer giving different targets. Measurements of cup orientation were made using a stereophotogrammetry protocol to measure radiographic
The angle of acetabular
Acetabular morphology and orientation differs from ethnic group to another. Thus, investigating the normal range of the parameters that are used to assess both was a matter of essence. Nevertheless, the main aim of this study was clarification the relationship between acetabular
Background. Positioning of the acetabular component in total hip arthroplasty has profound effects on the biomechanics, stability and wear of the prosthesis. Normal anatomical position in females is 57 degrees (50 – 67 degrees)
Introduction. Glenoid
Metal-on-metal (MOM) hip arthroplasty, including resurfacing, has become the subject of recent research and debate. There is the perceived benefit of improved wear rates of bearing surfaces leading to superior durability and performance of these types of implant. An associated feature of MOM bearing surfaces is the generation of metal ions. These can have local and systemic cytotoxic effects. An immunoloigical response has been suggested, however, metal wear debris may cause direct damage to cellular DNA. Studies have shown that release of these ions is related to bearing diameter and component alignment. However, little is known about the relationship between metal ion levels and implant survivorship. The MHRA has published guidelines on the follow-up of patients with MOM implants including measurement of serum ion levels and cross sectional imaging. Between February 2001 and November 2009, 135 patients (164 hips) had MOM resurfacing arthroplasty at our institution. We report a retrospective analysis of the data generated by review of these patients. Of the 135 patients, 91 were identified for clinical review. Each patient had serum metal ion levels measured, plain AP radiographs of the pelvis examined and, in the presence of raised metal ions, a Metal Artefact Reduction Sequence (MARS) MRI performed. 27 patients (35 hips) had raised metal ion levels (Cobalt and Chromium). Patients with raised metal ion levels had a mean acetabular cup
Reorientating pelvic osteotomies are performed to improve femoral head coverage and secondary degenerative arthritis. A rectangular triple pelvic innominate osteotomy (3PIO) is performed in symptomatic cases. However, deciding optimal screw fixation type to avoid complications is questionable. Therefore, this study aimed to investigate the biomechanical behavior of two different acetabular screw configurations used for rectangular 3PIO osteosynthesis. It was hypothesized that bi-directional screw fixation would be biomechanically superior to mono-axial screw fixation technique. A rectangular 3PIO was performed in twelve right-side artificial Hemi-pelvises. Group 1 (G1) had two axial and one transversal screw in a bi-directional orientation. Group 2 (G2) had three screws in the axial direction through the iliac crest. Acetabular fragment was reoriented to 10.5°
Dual mobility hip arthroplasty utilizes a freely rotating polyethylene liner to protect against dislocation. As liner motion has not been confirmed in vivo, we investigated the liner kinematics in vivo using dynamic radiostereometry. 16 patients with Anatomical Dual Mobility acetabular components were included. Markers were implanted in the liners using a drill guide. Static RSA recordings and patient reported outcome measures were obtained at post-op and 1-year follow-up. Dynamic RSA recordings were obtained at 1-year follow-up during a passive hip movement: abduction/external rotation, adduction/internal rotation (modified FABER-FADIR), to end-range and at 45° hip flexion. Liner- and neck movements were described as anteversion,
Odontoid fracture of the second cervical vertebra (C2) is the most common spinal fracture type in elderly patients. However, very little is known about the biomechanical fracture mechanisms, but could play a role in fracture prevention and treatment. This study aimed to investigate the biomechanical competence and fracture characteristics of the odontoid process. A total of 42 human C2 specimens (14 female and 28 male, 71.5 ± 6.5 years) were scanned via quantitative computed tomography, divided in 6 groups (n = 7) and subjected to combined quasi-static loading at a rate of 0.1 mm/s until fracturing at
Pre-operative 3D glenoid planning improves component placement in terms of version,
Abstract. Objectives. Accurate orientation of the acetabular component during a total hip replacement is critical for optimising patient function, increasing the longevity of components, and reducing the risk of complications. This study aimed to determine the validity of a novel VR platform (AescularVR) in assessing acetabular component orientation in a simulated model used in surgical training. Methods. The AescularVR platform was developed using the HTC Vive® VR system hardware, including wireless trackers attached to the surgical instruments and pelvic sawbone. Following calibration, data on the relative position of both trackers are used to determine the acetabular cup orientation (version and inclination). The acetabular cup was manually implanted across a range of orientations representative of those expected intra-operatively. Simultaneous readings from the Vicon® optical motion capture system were used as the ‘gold standard’ for comparison. Correlation and agreement between these two methods was determined using Bland-Altman plots, Pearson's correlation co-efficient, and linear regression modelling. Results. A total of 55 separate orientation readings were obtained. The mean average difference in acetabular cup version and
3D accurate measurements of the skeletal structures of the foot, in physiological and impaired subjects, are now possible using Cone-Beam CT (CBCT) under real-world loading conditions. In detail, this feature allows a more realistic representation of the relative bone-bone interactions of the foot as they occur under patient-specific body weight conditions. In this context, varus/valgus of the hindfoot under altered conditions or the thinning of plantar tissues that occurs with advancing age are among the most complex and interesting to represent, and numerous measurement proposals have been proposed. This study aims to analyze and compare these measurements from CBCT in weight-bearing scans in a clinical population. Sixteen feet of diabetic patients and ten feet with severe adult flatfoot acquired before/after corrective surgery underwent CBCT scans (Carestream, USA) while standing on the leg of interest. Corresponding 3D shapes of each bone of the shank and hindfoot were reconstructed (Materialise, Belgium). Six different techniques found in the literature were used to calculate the varus/valgus deformity, i.e., the
Variations in component positioning of total hip replacements can lead to edge loading of the liner, and potentially affect device longevity. These effects are evaluated using ISO 14242:4 edge loading test results in a dynamic system. Mediolateral translation of one of the components during testing is caused by a compressed spring, and therefore the kinematics will depend on the spring stiffness and damping coefficient, and the mass of the translating component and fixture. This study aims to describe the sensitivity of the liner plastic strain to these variables, to better understand how tests using different simulator designs might produce different amounts of liner rim deformation. A dynamic explicit deformable finite element model with 36mm Pinnacle metal-on-polyethylene bearing geometry (DePuy Synthes, Leeds, UK) was used with material properties for conventional UHMWPE. Setup was 65° clinical
Objectives. Acetabular component orientation in total hip arthroplasty (THA)
influences results. Intra-operatively, the natural arthritic acetabulum
is often used as a reference to position the acetabular component.
Detailed information regarding its orientation is therefore essential. The
aim of this study was to identify the acetabular
Background. Trust in the validity of a measurement tool is critical to its function in both clinical and educational settings. Acetabular cup malposition within total hip arthroplasty (THA) can lead to increased dislocation rates, impingement and increased wear as a result of edge loading. We have developed a THA simulator incorporating a foam/Sawbone pelvis model with a modified Microsoft HoloLens® augmented reality (AR) headset. We aimed to measure the trueness, precision, reliability and reproducibility of this platform for translating spatial measurements of acetabular cup orientation to angular values before developing it as a training tool. Methods. A MicronTracker® stereoscopic camera was integrated onto a HoloLens® AR system. Trueness and precision values were obtained through comparison of the AR system measurements to a gold-standard motion capture system”s (OptiTrack®) measurements for acetabular cup orientation on a benchtop trainer, in six clinically relevant pairs of anteversion and
Background. Many factors contribute to the occurrence of edge-loading conditions in hip replacement; soft tissue tension, surgical position, patient biomechanical variations and type of activities, hip design, etc. The aim of this study was to determine the effect of different levels of rotational and translational surgical positioning of hip replacement bearings on the occurrence and severity of edge-loading and the resultant wear rates. Method. The Leeds II Hip-Joint Simulator and 36mm diameter alumina matrix composite ceramic bearings (BIOLOX delta, DePuy Synthes, UK) were used in this study. Different levels of mismatch between the reconstructed rotational centres of the head and the cup were considered (2, 3 and 4mm) in the medial-lateral axis. Two cup
Introduction and Objective. The aim of this study was to evaluate whether CT-based pre-operative planning, integrated with intra-operative navigation could improve glenoid baseplate fixation and positioning by increasing screw length, reducing number of screws required to obtain fixation and increasing the use of augmented baseplate to gain the desired positioning. Reverse total shoulder arthroplasty (RSA) successfully restores shoulder function in different conditions. Glenoid baseplate fixation and positioning seem to be the most important factors influencing RSA survival. When scapular anatomy is distorted (primitive or secondary), optimal baseplate positioning and secure screw purchase can be challenging. Materials and Methods. Twenty patients who underwent navigated RSA (oct 2018 and feb 2019) were compared retrospectively with twenty patients operated on with a conventional technique. All the procedures were performed by the same surgeon, using the same implant in cases of eccentric osteoarthritis or complete cuff tear. Exclusion criteria were: other diagnosis as proximal humeral fractures, post-traumatic OA previously treated operatively with hardware retention, revision shoulder arthroplasty. Results. The NAV procedure required mean 11 (range 7–16) minutes more to performed than the conventional procedure. Mean screw length was significantly longer in the navigation group (35.5+4.4 mm vs 29.9+3.6 mm; p . .001). Significant higher rate of optimal fixation using 2 screws only (17 vs 3 cases, p . .019) and higher rate of augmented baseplate usage (13 vs 4 cases, p . .009) was also present in the navigation group. Signficant difference there is all in function outcomes, DASH score is 15.7 vs 29.4 and constant scale 78.1 vs 69.8. Conclusions. The glenoid component positioning in RSA is crucial to prevent failure, loosening and biomechanical mismatch, coverage by the baseplate of the glenoid surface, version,
Introduction and Objective. The patients with a total hip arthroplasty is growing in world manly in Europe and USA, and this solution present a high success at 10years in several orthopaedic registers. The application of total press-fit hip fixation presents the most used solution, but presents some failures associated to the acetabular component fixation, associated to the load transfer and bone loss at long term. The aim of this work is to investigate the influence of different acetabular bone loss in the strain distribution in iliac bone. To evaluate implant fixation, an experimental study was performed using acetabular press-fit component simulating different acetabular bone loss and measuring the strain distribution. Materials and Methods. The experimental samples developed was based in an iliac bone model of Sawbones supplier and a acetabular component Titanium (Stryker) in a condition press-fit fixation and was implanted according surgical procedure with 45º
Positioning of the hip resurfacing is crucial for its long term survival and is critical in young patients for some reasons; manly increase the wear in the components and change the load distribution. THR have increased in the last years, mainly in young patients between 45 to 59 years old. The resurfacing solution is indicated for young patients with good bone quality. A long term solution is required for these patients to prevent hip revision. The resurfacing prosthesis Birmingham Hip Resurfacing (BHR) was analyzed in the present study by in vitro experimental studies. This gives indications for surgeons when placing the acetabular cup. One synthetic left model of composite femur (Sawbones®, model 3403), which replicates the cadaveric femur, and four composite pelvic bones (Sawbones®, model 3405), were used to fix the commercial models of Hip resurfacing (Birmingham model). The resurfacing size was chosen according to the head size of femurs with 48 mm head diameter and a cup with 58 mm. They were introduced by an experimented surgeon with instrumental of prosthesis. The cup is a press fit system and the hip component was cemented using bone cement Simplex, Stryker Corp. The acetabular cup was analyzed in 4 orientations; in anteverion with 15º and 20°; and in