INTRODUCTION. Thorough understanding and feedback of the post-operative
Three-dimensional (3D) weight-bearing alignment of the lower extremity is crucial for understanding biomechanics of the normal and pathological functions at the hip, knee, and ankle joints. In addition,
Robotic-assisted technology in total knee arthroplasty (TKA) aims to increase implantation accuracy, with real-time data being used to estimate intraoperative component alignment. Postoperatively, Perth computed tomography (CT) protocol is a valid measurement technique in determining both femoral and tibial component alignments. The aim of this study was to evaluate the accuracy of intraoperative component alignment by robotic-assisted TKA through CT validation. A total of 33 patients underwent TKA using the MAKO robotic-assisted TKA system. Intraoperative measurements of both femoral and tibial component placements, as well as limb alignment as determined by the MAKO software were recorded. Independent postoperative Perth CT protocol was obtained (n.29) and compared with intraoperative values. Mean absolute difference between intraoperative and postoperative measurements for the femoral component were 1.17 degrees (1.10) in the coronal plane, 1.79 degrees (1.12) in the sagittal plane, and 1.90 degrees (1.88) in the transverse plane. Mean absolute difference between intraoperative and postoperative measurements for the tibial component were 1.03 degrees (0.76) in the coronal plane and 1.78 degrees (1.20) in the sagittal plane. Mean absolute difference of limb alignment was 1.29 degrees (1.25), with 93.10% of measurements within 3 degrees of postoperative CT measurements. Overall, intraoperatively measured component alignment as estimated by the MAKO robotic-assisted TKA system is comparable to CT-based measurements.
Accurate implant alignment, prolonged operative times, array pin site infection and intra-operative fracture risk with computer assisted knee arthroplasty is well documented. This study compares the accuracy and cost-effectiveness of the pre- operative MRI based Signature custom made guides (Biomet) to intra-operative computer navigation (BrainLab Knee Unlimited). Twenty patients from a single surgeon's orthopaedic waiting list awaiting primary knee arthroplasty were identified. Patients were contacted and consented for the study and their suitability for MRI examination assessed. An MRI scan of the hip, knee and ankle was performed of the operative side following a set scanning protocol. Following MRI, patient specific femoral and tibial positioning cutting guides were manufactured. Patients then underwent arthroplasty and intra-operative computer navigation was used to measure the accuracy of the custom made, patient specific cutting guides. A cost analysis of the signature system compared with computer navigation was made. Our provisional results show that the accuracy of the pre-operative MRI patient specific femoral and tibial positioning guides was comparable to computer navigation. Pre-operative, patient specific
Total shoulder arthroplasty (TSA) is an effective treatment for end-stage glenohumeral arthritis. The use of high modulus uncemented stems causes stress shielding and induces bone resorption of up to 63% of patients following TSA. Shorter length stems with smaller overall dimensions have been studied to reduce stress shielding, however the effect of humeral short stem varus-valgus positioning on bone stress is not known. The purpose of this study was to quantify the effect of humeral short stem varus-valgus angulation on bone stresses after TSA. Three dimensional models of eight male cadaveric humeri (mean±SD age:68±6 years) were created from computed tomography data using MIMICS (Materialise, Belgium). Separate cortical and trabecular bone sections were created, and the resulting bone models were virtually reconstructed three times by an orthopaedic surgeon using an optimally sized short stem humeral implant (Exactech Preserve) that was placed directly in the center of the humeral canal (STD), as well as rotated varus (VAR) or valgus (VAL) until it was contacting the cortex. Bone was meshed using a custom technique which produced identical bone meshes permitting the direct element-to-element comparison of bone stress. Cortical bone was assigned an elastic modulus of 20 GPa and a Poisson's ratio of 0.3. Trabecular bone was assigned varying stiffness based on CT attenuation. A joint reaction force was then applied to the intact and reconstructed humeri representing 45˚ and 75˚ of abduction. Changes in bone stress, as well as the expected bone response based on change in strain energy density was then compared between the intact and reconstructed states for all
Introduction. Although total knee arthroplasty (TKA) is generally considered successful, 16–30% of patients are dissatisfied. There are multiple reasons for this, but some of the most frequent reasons for revision are instability and joint stiffness. A possible explanation for this is that the implant alignment is not optimized to ensure joint stability in the individual patient. In this work, we used an artificial neural network (ANN) to learn the relation between a given standard cruciate-retaining (CR)
Introduction. Recent technological advancements have led to the introduction of robotic-assisted total knee arthroplasty to improve the accuracy and precision of bony resections and
Thoracic hyperkyphosis (TH – Cobb angle >40°) is correlated with rotator cuff arthropathy and associated with anterior tilting and protraction of scapula, impacting the glenoid orientation and the surrounding musculature. Reverse total shoulder arthroplasty (RTSA) is a reliable surgical treatment for patients with rotator cuff arthropathy and recent literature suggests that patients with TH may have comparable range of motion after RTSA. However, there exists no study reporting the possible link between patient-reported outcomes, humeral retroversion and TH after RTSA. While the risk of post-operative complications such as instability, hardware loosening, scapular notching, and prosthetic infection are low, we hypothesize that it is critical to optimize the biomechanical parameters through proper
Aim. The primary endpoint of this study is to characterize the progression of bone defects at the femoral and tibial side in patients who sustained PJI of the knee that underwent two-stage revision with spacer implantation. In addition, we want to analyze the differences between functional moulded and hand-made spacers. Methods. A retrospective analysis of patients that underwent two-stage revision due to PJI of the knee between January 2014 and December 2021 at our institution. Diagnosis of infection was based on the criteria of the Muscoloskeletal Infection Society. The bone defect evaluation was performed intraoperatively based on the AORI classification. The basal evaluation was performed at the time the resection arthroplasty and spacer implantation surgery. The final evaluation was performed at the second-stage surgery, at the time of spacer removal and revision
Background. Conventional instrumented total knee arthroplasty uses fixed angles for bony cuts followed by soft tissue releases to achieve balance. Robotic-assisted surgery allows for soft tissue balancing first then bony resection. The changes to the
Glenoid replacement is a manual bone removal procedure that can be difficult for surgeons to perform. Surgical robotics have been utilized successfully in hip and knee orthopaedic procedures but there are no systems currently available in the shoulder. These robots tend to have low adoption rates by surgeons due to high costs, disruption of surgical workflow and added complexity. As well, these systems typically use optical tracking which needs a constant line-of-sight which is not conducive to a crowded operating room. The purpose of this work was developing and testing a surgical robotic system for glenoid replacement. The new surgical system utilizes flexible components that tether a Stewart Platform robot to the patient through a patient specific 3D printed mount. As the robot moves relative to the bone, reaction loads from the flexible components bending are measured by a load cell allowing the robot to “feel” its way around. As well, a small bone burring tool was attached to the robot to facilitate the necessary bone removal. The surgical system was tested against a fellowship-trained surgeon performing standard surgical techniques. Both the robot and the surgeon performed glenoid replacement on two different scapula analogs: standard anatomy and posterior glenoid edge wear referred to as a Walch B2. Six of each scapula model was tested by the robot and the surgeon. The surgeon created a pre-operative plan for both scapula analogs as a target for both methodologies. CT scans of the post-operative cemented implants were compared to the pre-operative target and
Background. Despite the success of total hip arthroplasty (THA), there are still challenges including restoration of leg length, offset, and femoral version. The Tsolution One combines preoperative planning with an active robotic system to assist in femoral canal preparation during a THA. Purpose of Study. To demonstrate the use of an active robotic system in femoral implant placement and determine the accuracy of femoral
As Total Hip Replacement (THR) rates increase healthcare providers have sought to reduce costs, while at the same time improving patient safety and satisfaction. Up to 50% of patients may be appropriate for Day Case THR, and in appropriately selected patients’ studies show no increase in complication rate while affording a significant cost saving and maintaining a high rate of patient satisfaction. Despite the potential benefits, levels of adoption of Day Case THR vary. A common cause for this is the perception that doing so would require the adoption of new surgical techniques, implants, or theatre equipment. We report on a Day-Case THR pathway in centres with an established and well-functioning Enhanced Recovery pathway, utilising the posterior approach and standard
Background. Total knee arthroplasty (TKA) surgical techniques attempt to achieve equal flexion and extension gaps to produce a well-balanced knee, but unexplainable unhappy patients persist. Mid-flexion instability is one proposed cause of unhappy patients. There are multiple techniques to achieve equal flexion and extension gaps, but their effects in mid-flexion are largely unknown. Purpose of study. The purpose of the study is to determine the effects that changing femur implant size and/or adjusting the femur and tibia proximal -distal and femur anterior-posterior
Longevity of total hip arthroplasty (THA) is dependent upon avoiding both short- and long-term problems. One of the most common short-term / early complications of THA is instability while longer term issues of wear remain a concern. Both of these concerns appear to be related to
Background. Total knee arthroplasty (TKA) surgical techniques attempt to achieve equal flexion and extension gaps to produce a well-balanced knee. Anterior knee pain, which is not addressed by flexion-extension balancing, is one of the more common complaints for TKA patients. The variation in patellofemoral balance resulting from the techniques to achieve equal flexion and extension gaps has not been widely studied. Purpose of study. The purpose of the study is to determine the effects on cruciate retaining (CR) TKA patellofemoral balance when equal flexion and extension gaps are maintained while changing femur implant size and/or adjusting the femur and tibia implant proximal -distal and femur anterior-posterior positions. Methods. A computational analysis was performed simulating knee flexion of two CR TKA designs (JOURNEY II CR and LEGION HFCR; Smith & Nephew) using previously validated software (LifeMOD/KneeSim; LifeModeler). Deviations from the ideal
Acetabular
Restoring native hip biomechanics is crucial to the success of THA. This is reflected both in terms of complications after surgery such as instability, leg length inequality, pain and limp; and in terms of patient satisfaction. The challenge that remains is that of achieving optimal implant sizing and positioning so as to restore, as closely as possible, the native hip biomechanics specific to the hip joint being replaced. This would optimise function and reduce complications, particularly, instability. (Mirza et al., 2010). Ideally, this skill should also be reproducible irrespective of the surgeon's experience, volume of surgery and learning curve. The general consensus is that the most substantial limiting factor in a THA is the surgeon's performance and as a result, human errors and unintended complications are not completely avoidable (Tarwala and Dorr, 2011). The more challenging aspects include acetabular component version, sizing and femoral component sizing, offset and position in the femoral canal. This variability has led to interest in technologies for planning THA, and technologies that help in the execution of the procedure. Advances in surgical technology have led to the development of computer navigation and robotic systems, which assist in pre-operative planning and optimise intra-operative
The goals of a total knee arthroplasty include approximation of the function of a normal knee and achievement of balance post-surgery. Accurate bone preparation and the preservation of natural ligaments along with a functional knee design, holds the potential to provide a method of restoring close to normal function. Although conventional knee arthroplasty is considered a successful intervention for end-stage osteoarthritis, some patients still experience reduced functionality and in some cases, require revision procedures. With conventional manual techniques, accurate alignment of the tibial component has been difficult to achieve. Even in the hands of skilled knee surgeons, outliers beyond 2 degrees of the desired alignment may occur in as many as 40%-60% of cases using conventional methods, and the range of component alignment varies considerably. Similarly, for total knee replacement outliers beyond 2 degrees of the desired alignment may occur in as many as 15% of cases in the coronal plane, going up to 40% of unsatisfactory alignment in the sagittal plane. Robotics-assisted arthroplasty has gained increasing popularity as orthopaedic surgeons aim to increase accuracy and precision of
Introduction. Reverse shoulder Arthroplasty is a successful treatment for gleno-humeral osteoarthritis. However, components loosening and painful prostheses, related to components wrong positioning, are still a problem for those patients who underwent this kind of surgery. Several new technology has been developed the improve the