Advertisement for orthosearch.org.uk
Results 1 - 20 of 53
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 210 - 210
1 Sep 2012
Cummins F Kelly D Kenny P
Full Access

Background and purpose. The two most common complications of femoral impaction bone grafting are femoral fracture and massive implant subsidence. We investigated fracture forces and implant subsidence rates in embalmed human femurs undergoing impaction grafting. The study consisted of two arms, the first examining the force at which femoral fracture occurs in the embalmed human femur, and the second examining whether significant graft implant/subsidence occurs following impaction at a set force at two different impaction frequencies. Methods. Using a standardized impaction grafting technique with modifications, an initial group of 17 femurs underwent complete destructive impaction testing, allowing sequentially increased, controlled impaction forces to be applied until femoral fracture occurred. A second group of 8 femurs underwent impaction bone grafting at constant force, at an impaction frequency of 1 Hz or 10 Hz. An Exeter stem was cemented into the neomedullary canals. These constructs underwent subsidence testing simulating the first 2 months of postoperative weight bearing. Results. No femur fractured below an impaction force of 0.5 kN. 15/17 of the femurs fractured at or above 1.6 kN of applied force. In the second group of 8 femurs, all of which underwent femoral impaction grafting at 1.6 kN, there was no correlation between implant subsidence and frequency of impaction. Average subsidence was 3.2 (1–9) mm. Interpretation. It is possible to calculate a force below which no fracture occurs in the embalmed human femur undergoing impaction grafting. Higher impaction frequency at constant force did not reduce rates of implant subsidence in this experiment


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 169 - 169
1 Sep 2012
Bartlett G Wilson M Whitehouse S Hubble M Gie G Timperley J Howell J
Full Access

We present 346 consecutive revision procedures for aseptic loosening with acetabular impaction bone grafting (AIBG) and a cemented polyethylene cup. Defects were contained with mesh alone. Mean follow up of 6.6 years, range 8 days-13 years. The Oxford Hip (OHS) and Harris Hip (HHS) scores were collected prospectively. Radiological definition of cup failure was either > 5mm displacement, or > 5° rotation. Cox regression analysis was performed on ten separate patient and surgical factors to determine their significance on survivorship.

Kaplan Meier survivorship at 10 years (42 cases remaining at risk) for aseptic loosening was 87% (95% confidence Interval (CI): 81.6 to 92.2) and 85.6% (95% CI: 80.3 to 90.9) for all revisions. These results are comparable to other reported series utilising AIBG. However, there were 88 cases (25%) that exceeded the radiological migration parameters, but their functional scores were not significantly different to the non-migrators: OHS p=0.273, HHS p=0.16. The latest post-operative mean OHS was 33 (SD 10.66). Female gender (p=0.039), increasing graft thickness (p=0.006) and the use of mesh (p=0.037) were significant risk factors for revision, but differing techniques in graft preparation, including artificial graft expanders (p=0.73), had no significant effect when analysed using Cox regression.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 63 - 63
1 Dec 2016
Gross A
Full Access

Impaction grafting is an excellent option for acetabular revision. It is technique specific and very popular in England and the Netherlands and to some degree in other European centers. The long term published results are excellent. It is, however, technique dependent and the best results are for contained cavitary defects. If the defect is segmental and can be contained by a single mesh and impaction grafting, the results are still quite good. If, however, there is a larger segmental defect of greater than 50% of the acetabulum or a pelvic discontinuity, other options should be considered. Segmental defects of 25–50% can be managed by minor column (shelf) or figure of 7 structural allografts with good long term results. Porous metal augments are now a good option with promising early to mid-term results. Segmental defects of greater than 50% require a structural graft or porous augment usually protected by a cage. If there is an associated pelvic discontinuity then a cup cage is a better solution. An important question is does impaction grafting facilitate rerevision surgery? There is no evidence to support this but some histological studies of impacted allograft would suggest that it may. On the other hand there are papers that show that structural allografts do restore bone stock for further revision surgery. Also the results of impaction grafting are best in the hands of surgeons comfortable with using cement on the acetabular side, and one of the reasons why this technique is not as popular in North America


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVII | Pages 41 - 41
1 May 2012
Cummins F Kenny P Kelly D
Full Access

Summary. A laboratory based study investigating fracture forces and implant subsidence rates in embalmed human femurs undergoing impaction grafting. Methods. Human femurs were harvested from cadavers for destructive impaction testing. An initial group of femurs underwent destructive impaction testing, using the impaction grafting technique as described by Gie et al, modified, allowing increasing, controlled impaction forces to be applied until femoral fracture occurred. A second group of embalmed human femurs underwent impaction bone grafting at constant force, with varied impaction frequencies. An Exeter stem was cemented into the neo-medullary canals. These constructs underwent subsidence testing simulating the first 2 months post-operative weight-bearing. Results. In a group of 17 femurs, none fractured below a 0.5kN impaction force. 82% of the femurs fractured at or above 1.6kN of applied force. No massive implant subsidence occurred in the second group of 8 femurs, all undergoing femoral impaction grafting at 1.6kN. There was no correlation between implant subsidence and frequency of impaction. Average subsidence was 3.2mm. Conclusions. It is possible to calculate a force below which no fracture occurs in the embalmed human femur undergoing impaction grafting. Increasing impaction frequency, at constant force, doesn't decrease rates of implant subsidence


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 427 - 427
1 Dec 2013
Mighell M Miles J Santoni B Anijar L James C
Full Access

Purpose:. Tuberosity healing in hemiarthroplasty for proximal humerus fractures remains problematic. Improved implant design and better techniques for tuberosity fixation have not been met with improved clinical results. The etiology for tuberosity failure is multifactorial; however thermal injury to host bone is a known effect of using polymethylmethacrylate for implant fixation. We hypothesized that the effect of thermal injury at the tuberosity shaft junction could be diminished by utilizing an impaction grafting technique for hemiarthroplasty stems. Methods:. Five matched pairs of cadaveric humeri were skeletonized and hemiarthroplasty stems were implanted in the proximal humeri in two groups. The first group had full cementation utilized from the surgical neck to 2 cm distal to the stem (cement group) and the second group had distal cementation with autologous cancellous bone graft impacted in the proximal 2.5 cm of the stem (impaction grafting group). Thermocouples were used to measure the inner cortical temperature at the tip of the stem, surgical neck, and at the level of the cement-graft interface for both treatment groups (see Fig. 1). Experiments were initiated with the humeri fully submerged in 0.9% sodium chloride and all three thermocouples registering a temperature of 37 ± 1°C. Statistical analyses were performed with a one-sided, paired t-test. Results:. The maximum recorded cortical bone temperature at the surgical neck was significantly decreased by 23% from 52.4 ± 8.1°C in the cement group to 40.4 ± 4.8°C in the impaction grafting group (p = 0.037). We identified no significant differences in maximum recorded temperature at the cement-graft interface between the impaction grafting group (44.3 ± 6.3°C) and the cement group (47.4 ± 6.4°C) (p = 0.254). A similar finding was observed between groups at the tip of the hemiarthroplasty stem (impaction grafting group 54.2 ± 5.7°C; cemented group 52.3 ± 7.3°C, p = 0.303). Conclusion:. Given the known threshold of 47°C as the onset of permanent thermal injury to bone,. 1. impaction grafting maintains the temperature at the surgical neck during cementation below this critical value. Impaction grafting may serve as a beneficial surgical technique to mitigate the effects of thermal injury on tuberosity healing in proximal humeral hemiarthroplasty for fracture


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 104 - 104
1 May 2019
Haddad F
Full Access

There has been an evolution in revision hip arthroplasty towards cementless reconstruction. Whilst cemented arthroplasty works well in the primary setting, the difficulty with achieving cement fixation in femoral revisions has led to a move towards removal of cement, where it was present, and the use of ingrowth components. These have included proximally loading or, more commonly, distally fixed stems. We have been through various iterations of these, notably with extensively porous coated cobalt chrome stems and recently with taper-fluted titanium stems. As a result of this, cemented stems have become much less popular in the revision setting. Allied to concerns about fixation and longevity of cemented fixation revision, there were also worries in relation to bone cement implantation syndrome when large cement loads were pressurised into the femoral canal at the time of stem cementation. This was particularly the case with longer stems. Technical measures are available to reduce that risk but the fear is nevertheless there. In spite of this direction of travel and these concerns, there is, however, still a role for cemented stems in revision hip arthroplasty. This role is indeed expanding. First and foremost, the use of cement allows for local antibiotic delivery using a variety of drugs both instilled in the cement at the time of manufacture or added by the surgeon when the cement is mixed. This has advantages when dealing with periprosthetic infection. Thus, cement can be used both as interval spacers but also for definitive fixation when dealing with periprosthetic hip infection. The reconstitution of bone stock is always attractive, particularly in younger patients or those with stove pipe canals. This is achieved well using impaction grafting with cement and is another extremely good use of cement. In the very elderly or those in whom proximal femoral resection is needed at the time of revision surgery, distal fixation with cement provides a good solution for immediate weight bearing and does not have the high a risk of fracture seen with large cementless stems. Cement is also useful in cases of proximal femoral deformity or where cement has been used in a primary arthroplasty previously. We have learnt that if the cement is well-fixed then the bond of cement-to-cement is excellent and therefore retention of the cement mantle and recementation into that previous mantle is a great advantage. This avoids the risks of cement removal and allows for much easier fixation. Stems have been designed specifically to allow this cement-in-cement technique. It can be used most readily with polished tapered stems - tap out a stem, gain access at the time of revision surgery and reinsert it. It is, however, now increasingly used when any cemented stems are removed provided that the cement mantle is well fixed. The existing mantle is either wide enough to accommodate the cement-in-cement revision or can be expanded using manual instruments or ultrasonic tools. The cement interface is then dried and a new stem cemented in place. Whilst the direction of travel in revision hip arthroplasty has been towards cementless fixation, particularly with tapered distally fixed designs, the reality is that there is still a role for cement for its properties of immediate fixation, reduced fracture risk, local antibiotic delivery, impaction grafting and cement-in-cement revision


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 60 - 60
1 May 2013
Haddad F
Full Access

The principles of acetabular reconstruction include the creation of a stable acetabular bed, secure prosthetic fixation with freedom of orientation, bony reconstitution, and the restoration of a normal hip centre of rotation with acceptable biomechanics. Acetabular impaction grafting, particularly with cemented implants, has been shown to be a reliable means of acetabular revision. Whilst our practice is heavily weighted towards cementless revision of the acetabulum with impaction grafting, there is a large body of evidence from Tom Slooff and his successors that cemented revision with impaction grafting undertaken with strict attention to technical detail is associated with excellent long terms results in all ages and across a number of underlying pathologies including dysplasia and rheumatoid arthritis. We use revision to a cementless hemispherical porous-coated acetabular cup for most isolated cavitary or segmental defects and for many combined deficiencies. Morsellised allograft is packed in using chips of varied size and a combination of impaction and reverse reaming is used in order to create a hemisphere. There is increasing evidence for the use of synthetic grafts, usually mixed with allograft, in this setting. The reconstruction relies on the ability to achieve biological fixation of the component to the underlying host bone. This requires intimate host bone contact, and rigid implant stability. It is important to achieve host bone contact in a least part of the dome and posterior column – when this is possible, and particularly when there is a good rim fit, we have not found it absolutely necessary to have contact with host bone over 50% of the surface. Once the decision to attempt a cementless reconstruction is made, hemispherical reamers are used to prepare the acetabular cavity. Sequentially larger reamers are used until there is three-point contact with the ilium, ischium and pubis. Acetabular reaming should be performed in the desired orientation of the final implant, with approximately 200 of anteversion and 400 of abduction (or lateral opening). Removing residual posterior column bone should be avoided. Reaming to bleeding bone is desirable. Morsellised allograft is inserted and packed and/or reverse reamed into any cavitary defects. This method can also be applied to medial wall uncontained defects by placing the graft onto the medial membrane or obturator internus muscle, and gently packing it down before inserting the cementless acetabular component. Either the reamer heads or trial cups can be used to trial prior to choosing and inserting the definitive implant. The fixation is augmented with screws in all cases. Incorporation of the graft may be helped by the use of autologous bone marrow. Cementless acetabular components with impaction grafting should not be used when the host biology does not allow for stability or for bone ingrowth. This includes the severely osteopenic pelvis, pelvic osteonecrosis after irradiation, tumours, and metabolic bone disorders. They should also not be used in the presence of pelvic discontinuity unless the structure of the pelvic ring has been restored with a plate, or specialised materials/porous metals are used. The challenge of reconstituting the acetabulum depends on the degree and type of bone loss. The principles of maximising host bone-implant contact and implant stability have borne fruit in our experience with cementless revision. The advantages of bone grafting in acetabular reconstruction include the ability to restore bone stock, to rebuild a normal hip center and hip biomechanics and to increase bone stock for future revisions


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 165 - 165
1 Sep 2012
Schmitz MW Busch VJ Gardeniers JW Hendriks JC Veth RP Schreurs BW
Full Access

Introduction. Especially in young patients, total hip implants with proven long-term follow-up data should be used. Despite this, almost all patients under 30 years old will face a revision of their hip prosthesis during their life time because of their life expectancy. Therefore, all the used implants should be revisable with reliable outcome. Although, several studies have evaluated the outcome of different THA implants in patients under 30, only few report the long term follow-up of 10 years or more. None of them present the outcome of the revised total hips. Methods. We retrospectively reviewed prospectively collected data of 48 consecutive patients (69 hips), all received a cemented implant and in case of acetabular bone stock deficiency (29 hips), a reconstruction with bone impaction grafting (BIG) was performed. Mean age at surgery was 24.6 years (range, 16.0–29.0 years). Two patients were lost to follow-up. As far as we know, no revisions are performed in these two patients and their data are included in the study up to their last radiographic control. All failed hips were revised with again cemented implants and, if needed, bone impaction grafting. For the primary THA Kaplan-Meier survival curves at 10- and 15-year endpoint revision for any reason and revision for aseptic loosening were calculated. Separate survival rates at 10- and 15- year were calculated for the BIG group versus the non-BIG group. The outcome of the revised hips was studied and reported with re-revision as the endpoint. Results. Mean follow-up of all 69 hips was 11.5 years (range 2–23.4 years). During follow-up 13 revisions were performed. No stem revisions occurred, except in 3 septic failures. The 10- and 15-year survival rates with endpoint revision for any reason were 86% (95%-CI: 74–92%) and 75% (95%-CI:59-86%), the same endpoints revision for aseptic loosening were 90% (95%-CI: 79–96%) and 82% (95%-CI: 65–92%), respectively. The 10- and 15-year survival rates with endpoint revision for any reason in the BIG group were 93% (95%-CI: 74–98%) and 83% (95%-CI:49-95%), whereas for the non-BIG group the rates were 81% (95%-CI: 69–91%) and 71% (95%-CI:50-84%). None of the 13 revisions needed a re-revision within 10 years after re-implantation, although one cup failed after 13 years. Conclusion. This study shows that cemented primary total hip implants in patients under 30 years have acceptable outcomes at 10 and 15 years after surgery. Remarkably, the outcomes of the bone impaction grafting technique are superior to non BIG hips, the BIG-group shows a higher survival percentage as the non-BIG group. However, the most interesting part of the study is that the revised hips, all again re-cemented and, if needed, reconstructed with bone impaction grafting were performing well with no re-revisions within 10 years after surgery


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 71 - 71
1 Jan 2016
Timperley J Wilson M
Full Access

Acetabular impaction grafting (AIG) for the reconstruction of acetabular defects in total hip arthroplasty has the potential to recreate anatomy whilst also allowing the restoration of bone stock. The incorporation of impacted, morcellised bone graft has been demonstrated in histological studies and is a well established technique in revision hip surgery where there is loss of bone stock. We have studied our results of fullAIG when used in primary total hip arthroplasty, with particular emphasis on the results of AIG in cavitary and segmental defects. Between 1995 and 2003, 129 cemented primary THAs were performed using full acetabular impaction grafting to reconstruct acetabular deficiencies. These were classified as cavitary in 74 and segmental in 55 hips. Eighty-one patients were reviewed at mean 9.1 (6.2–14.3) years post-operatively. There were seven acetabular component revisions due to aseptic loosening, and a further 11 cases that had migrated »5 mm or tilted »5° on radiological review — ten of which reported no symptoms. Kaplan–Meier analysis of revisions for aseptic loosening demonstrates 100% survival at nine years for cavitary defects compared to 82.6% for segmental defects. Our results suggest that the medium-term survival of this technique is excellent when used for purely cavitary defects but less predictable when used with large rim meshes in segmental defects


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 27 - 27
1 Mar 2012
Flannery O O'Reilly P Britton J Mahony N Prendergast P Kenny P
Full Access

The process of femoral impaction grafting requires vigorous impaction to obtain adequate stability but the force of impaction has not been determined. This process has been reported to result in femoral fractures with rates reaching 16%. The aims of this study were to determine the threshold force required for femoral impaction grafting, to determine the affect cortical thickness, canal diameter and bone mineral density (BMD) have on this threshold force and to measure subsidence of an Exeter prosthesis following impaction at the threshold force. Adult sow femurs were prepared and placed through a DEXA scanner and the BMD and canal diameter measured. Thirty five femurs were impacted with morsellised bone chips and an increasing force of 0.5kN was applied until the femur fractured. Using callipers the cortical thickness of the bone was measured along the fracture line. Once the threshold force was determined 5 femurs were impacted to this threshold force and an Exeter stem was cemented into the neomedullary canal and a 28mm Exeter head attached. Axial cyclic loading was performed between 440N (swing phase of gait) and 1320N (stance phase of gait) for 150,000 cycles at a frequency of 3Hz. The position sensor of the hydraulic testing machine measured the subsidence. 29 tests were successfully completed. The threshold force was found to be 4kN. There was no significant correlation between the load at fracture and the cortex: canal ratio or the bone mineral density. Following impaction with the maximum force of 4kN the average subsidence for the 5 femurs was 0.276mm (range 0.235 – 0.325mm). In this animal study the threshold force was 4kN. Minimal axial subsidence of the implant occurred when impacting the graft with this threshold force. We therefore achieved a stable construct without fracture which is the ultimate goal for the revision hip surgeon


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 12 - 12
1 May 2019
Throckmorton T
Full Access

Reverse total shoulder arthroplasty (RTSA) has a proven track record as an effective treatment for a variety of rotator cuff deficient conditions. However, glenoid erosion associated with the arthritic component of these conditions can present a challenge for the shoulder arthroplasty surgeon. Options for treatment of glenoid wear include partial reaming with incomplete baseplate seating, bony augmentation using structural or impaction grafting techniques, and augmented baseplates. Augmented components have the advantage of accommodating glenoid deformity with a durable material and also ream less subchondral bone; both of which may offer an advantage over traditional bone grafting. Biomechanical and early clinical studies of augmented glenoid baseplates suggest they are a reasonable treatment option, though posteriorly augmented baseplates have shown better performance than superiorly augmented implants. However, there are no mid- or late-term studies comparing augmented baseplates to bone grafting or partial reaming. We present a live surgical demonstration of RTSA for a patient with advanced glenoid erosion being treated with an augmented glenoid baseplate that can be dialed in the direction of any deformity (superior, posterior, etc.). This versatility allows the surgeon to place the augment in any direction and is not confined to the traditional concepts of glenoid wear in a single vector. Clearly, longer term follow up studies are needed to determine the ultimate effectiveness of these devices in treating glenoid deformity in RTSA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 109 - 109
1 May 2013
Barrack R
Full Access

The major causes of revision total knee are associated with some degree of bone loss. The missing bone must be accounted for to insure success of the revision procedure, to achieve flexion extension balance, restore the joint line to within a centimeter of its previous level, and to assure a proper sizing especially the anteroposterior diameter of the femoral component. In recent years, clinical practice has evolved over time with a general move away from a structural graft with an increase in utilisation of metal augments. Alternatives include cement with or without screw fixation, rarely, with the most common option being the use of metal wedges. With the recent availability of highly porous augments, the role of metal augmentation has increased. Bone graft is now predominantly used in particulate form for contained defects with more limited use of structural graft. The role of the allograft-prosthetic composite has become more limited. For the elderly with osteopenia and massive bone loss, complete metal substitution with an oncology prosthesis has become more common. The degree of bone loss is a major determinant of the management strategy. For contained defects less than 5 mm, cement alone, with or without screw supplementation, may be adequate. For greater than 5 mm, morselised graft is frequently used. For uncontained defects of up to 15 mm or more, metal augmentation is the first choice. Bone graft techniques can be utilised in this setting, however, these are more time consuming and technically demanding with little demonstrated advantage. For larger, uncontained defects, newer generation highly porous augments and step wedges are useful. Large contained defects can be dealt with utilising impaction grafting, similar to the hip impaction grafting technique. Massive distal defects are expeditiously managed with oncology defects in the case of periprosthetic fracture and/or massive osteolysis particularly when combined with osteopenia in an elderly, low demand patient. Surgeons must be familiar with an array of techniques in order to effectively deal with the wide spectrum of bone defects encountered during revision total knee arthroplasty


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 479 - 479
1 Dec 2013
Perticarini L Ghiara M Lamberti T Benazzo FM
Full Access

INTRODUCTION. Managing severe periacetabular bone loss during revision total hip arthroplasty (THA) is a challenging task. Multiple treatment options have been described. Delta Revision Trabecular Titanium™ (TT) cup is manufactured by Electron Beam Melting (EBM) technology that allows modulating cellular solid structures with an highly porous structure were conceived to rich the goals of high bone ingrowth and physiological load transfer. The caudal hook and fins ensure additional stability and the modular system allows the surgeon to treat bone defects in the most complex revisions. Entirely modular, the system can meet all intra-operative needs thanks to a customized implant construction. The aim of this prospective study is to evaluate the short to mid-term clinical and radiographic outcomes of this acetabular revision cups. MATERIALS AND METHODS. We prospectively assessed clinical and radiographic results of 31 cases of acetabular revisions that were performed from June 2007 and March 2012 by Delta TT Lima Revision system. The mean age of patients was 69.5 years (range 29–90). The causes of revision were aseptic loosening in 22 cases (71.0%), periprosthetic acetabular fractures in 4 cases (13.0%), multiple dislocation of the primary implant in 3 cases (9.6%) and outcome of infection in 2 cases (6.4%). Stem revision was performed in 11 cases (35,4%). In 24 cases bone impaction grafting was used to fill cavitary defects (Paprosky 2B-3A); in 7 cases TT augments were used with the same aim. The average follow-up was 32 months (range 12–69). RESULTS AND CONCLUSIONS. No major complications were observed. The mean HHS significantly increased from 39.9 (range 17–60) preoperatively to 86.5 (range 65–100) at the last follow-up examination. The implanted cups were radiographically stable at the last follow-up visit without radiolucent lines or periprosthetic osteolysis. Trabecular Titanium showed a high capacity of osseointegration, providing excellent results in short to mid-term follow-up. The impaction grafting has demonstrated effective restoration of bone stock and no radiographic evidence bone resorption (Fig. 1). DISCUSSION. Delta Revision TT is a good solution for acetabular revision surgery even when there are cavitary and segmental bone defects. It is possible to restore muscle tension and correct anatomical impairments, while enhancing implant stability and minimising the risk of dislocation


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 53 - 53
1 Mar 2013
De Kam DC Van Heumen MR Gardeniers JW Veth RP Schreurs BW
Full Access

Background. These days, total hip arthroplasties (THA) are more implanted in young patients. Due to the expected lifespan of a THA and the life expectancy of young patients, a future revision is inevitable. Indirectly increasing the number of revisions in these patients. Therefore we evaluated the results of revision THA in patients under the age of 60 years. However, we used a unique protocol in which we used in all cases of acetabular and/or femoral bone deficiencies reconstruction with bone impaction grafting. Methods. To determine the mid- to longterm results of cemented revision total hip arthroplasties in patients under the age of 60, all clinical data and radiographs were analyzed of patients operated between 1992 and 2005. Patients with multiple previous revisions were also included. Only cemented components were used. During this period 146 consecutive revision total hip arthroplasties were implanted in 129 patients. This included 124 cup and 106 stem revisions. The average age at index surgery was 47 years. No case was lost. Mean follow-up was 7.6 (range, 2.0–16.7) years. Results. Outcome of clinical questionnaires improved significantly after revision THA. During follow-up 19% (28 hips) needed a repeat revision (aseptic loosening 13, septic loosening 10, recurrent dislocations 2, traumatic loosening 2, and abductor contracture 1). Seven of 146 cases (4.8%) ended finally in a permanent Girdlestone. Seventeen (14%) of the 124 cups were radiographically loose, 11 were revised. Four (4%) of the 106 stems were radiographically loose, 2 were revised. The 10-years survival was 78% with endpoint revision for any reason and 87% with endpoint revision for aseptic loosening. 28 hips needed repeat revision after the index revision. No significant differences in survival were found looking at the different indications for revision. Conclusions. The survival of cemented revision THA in patients under the age of 60 is satisfying. Reconstruction of acetabular and femoral bone deficiencies with bone impaction grafting is a promising and biological attractive technique in this young and high demanding population and enhances the revisability of a THA


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXII | Pages 19 - 19
1 Jul 2012
Masterson S Lidder S Scott G
Full Access

An attempt to analyse whether impaction allografting without cement is more or less satisfactory than the technique with the addition of cement is compromised by conflicting reports of where the migration actually occurs. In some cemented series distal migration of the prosthesis within the cement mantle has been recorded as well as migration of the whole cement/prosthesis construct into the graft. Two prospective consecutive series of revision hip arthroplasties by a single surgeon:- Group 1; Uncemented impaction grafting revision hip replacement in a series of 30 patients (33 hips). Group 2; Cemented impaction grafting revision hip replacement in a series of 30 patients (31 hips). Group demographics were similar. Each case used the same design of hip implant with the only difference in design being a proximal hydroxyapatite coating used on the uncemented implants. Follow-up ranged from 2 to 17 years for the uncemented group and from 1 to 11 years for the cemented group. A validated hip scoring system was employed at regular follow up incorporating pain and functional assessment. Migration rates for the uncemented group were 0 to 15 mm for 30 hips; however 3 hips were revised early due to excessive migration. 3 hips sustained early complications (1 fracture, 1 dislocation, 1 varus malposition of stem). Migration rates for the cemented group were 0 to 9 mm for 29 hips, however the remaining 3 hips were revised due to excessive migration (up to 33mm). Although similar results were obtained in terms of success and also pain and function scores, marginal improvement in results did occur with the cemented series overall. Statistical significance was not reached however. More sinkage occurred in the uncemented group overall, the majority occurring in the first 6 post-operative months. Part of the improvement with the cemented series results may be explained by the improved techniques achieved whilst performing the uncemented series. These results from a single surgeon demonstrate that the method is highly technique dependent and relies on adequate graft impaction. With sufficient graft and an appropriate prosthetic design, cement is not essential to the early success of this method. However, the extent of the initial migration did not accurately predict a successful outcome for the procedure. The absence of cement removes any confusion as to the location of any migration


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 31 - 31
1 May 2019
Cross M
Full Access

The management of bone loss in revision total knee replacement (TKA) remains a challenge. To accomplish the goals of revision TKA, the surgeon needs to choose the appropriate implant design to “fix the problem,” achieve proper component placement and alignment, and obtain robust short- and long-term fixation. Proper identification and classification of the extent of bone loss and deformity will aid in preoperative planning. Extensive bone loss may be due to progressive osteolysis (a mechanism of failure), or as a result of intraoperative component removal. The Anderson Orthopaedic Research Institute (AORI) is a useful classification system that individually describes femoral and tibial defects by the appearance, severity, and location of bone defects. This system provides a guideline to treatment and enables preoperative planning on radiographs. In Type 1 defects, femoral and tibial defects are characterised by minor contained deficiencies at the bone-implant interface. Metaphyseal bone is intact and the integrity of the joint line is not compromised. In this scenario, the best reconstruction option is to increase the thickness of bone resection and to fill the defect with cancellous bone graft or cement. Type 2 defects are characterised by deficient metaphyseal bone involving one or more femoral condyle(s) or tibial plateau(s). The peripheral rim of cortical bone may be intact or partially compromised, and the joint line is abnormal. Reconstruction options for a Type 2A defect include impaction bone grafting, cement, or more commonly, prosthetic augmentation (e.g. sleeves, augments or wedges). In Type 2B defects, metaphyseal bone of both femoral condyles or both tibial plateaus is deficient. The peripheral rim of cortical bone may be intact or partially compromised, and the joint line is abnormal. Options for a Type 2B defect include impaction grafting, bulk structural allograft, prosthetic augmentation, metaphyseal sleeves (in some cases), or metaphyseal cones. Finally, in the presence of a Type 3 deficiency, both metaphyseal and cortical bone is deficient and there is partial or complete disruption of the collateral ligament attachments. In this case, the most commonly used reconstruction options include hinged implants or megaprostheses with or without bulk structural allograft, prosthetic augmentation, and/or metaphyseal/diaphyseal sleeves or cones. Today, we are fortunate to have a wide variety of options available to aid in reconstruction of a revision TKA with massive bone loss. Historically, use of cement, bone grafting, or use of a tumor-type or hinged implant were considered the main options for reconstruction. The development and adoption of highly porous sleeves and cones has given the surgeon a new and potentially more durable option for reconstruction of previously difficult to treat defects. Using radiographs and computed tomography, surgeons are able to preoperatively classify bone loss and anticipate a reconstruction plan based upon the classification; however, it is always important to have several back-up options on hand during revision surgery in the event bone loss is worse than expected


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 166 - 166
1 Sep 2012
Schreurs W
Full Access

Background. Because of the long life expectancy of young total hip arthroplasty (THA) patients and the limited durability of prosthetic implants in young patients, surgeon's always must take into account that the primary THA will be revised in the future. Therefore, not only the survival of the primary total hip in young patients is important, but we would also like to accentuate the revisability of a primary THA in this specific and high demanding patient population. Methods. Based on our philosophy, we always use cemented hip in young patients, if needed with acetabular bone impaction grafting. 343 consecutive cemented THA in 270 patients under the age of 50 years were evaluated, all implanted between 1988 and 2006. We also assessed the results of the revised THA (n=53) within the same population. Clinical, radiographical and survival of primary and revision THA were evaluated. Outcome. Survival analysis of all 343 hips with endpoint revision for any reason of either component showed a survival of 86% after 10 years. Survival of the stem and cup with endpoint aseptic loosening 93% after 10 years. Remarkably, the THA in which the cemented cup was combined with acetabular bone impaction grafting had a survival of 90% (SE 2.8) in contrast to a survival of 82% (SE 3.4) of the cups without an acetabular revision with endpoint revision for any reason of the whole prostheses(log-rank test, p=0.156) at 10 years. With no patient lost during follow-up, 53 primary hips were revised after a mean follow-up of 8.9 (range 2.0–19.3) years. The average follow-up of the revision THA was 4.2 (range 0.1–14.8) years. Three hips of this revision cohort needed a repeat revision, two had a reinfection after a septic revision and one revised cup failed 12 years after revision. The survival of the revised cohort with endpoint revision for any reason was 91% after 5 years, with endpoint aseptic loosening the survival at 5 years was 100 %. As well after primary as revision THA good clinical outcome scores were measured. Interpretation. Cemented implants in young patients showed satisfying results in primary as well as after revision THA with very acceptable survival and clinical outcomes. Keeping in mind that the young patient will outlive their primary THA, the primary hip has to be revisable and the results of the revision THA must be as good as the primary THA. Bone defects both in primary and revision THA can be successful managed with impacted bone grafts, without the need for augments, cages or larger implants


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 103 - 103
1 May 2019
Paprosky W
Full Access

As the number of patients who have undergone total hip arthroplasty rises, the number of patients who require surgery for a failed total hip arthroplasty is also increasing. It is estimated that 183,000 total hip replacements were performed in the United States in the year 2000 and that 31,000 of these (17%) were revision procedures. Reconstruction of the failed femoral component in revision total hip arthroplasty can be challenging from both a technical perspective and in preoperative planning. With multiple reconstructive options available, it is helpful to have a classification system which guides the surgeon in selecting the appropriate method of reconstruction. A classification of femoral deficiency has been developed and an algorithmic approach to femoral reconstruction is presented. An extensively coated, diaphyseal filling component reliably achieves successful fixation in the majority of revision femurs. The surgical technique is straightforward and we continue to use this type of device in the majority of our revision total hip arthroplasties. However, in the severely damaged femur (Type IIIB and Type IV), other reconstructive options may provide improved results. Based on our results, the following reconstructive algorithm is recommended for femoral reconstruction in revision total hip arthroplasty. Type I: In a Type I femur, there is minimal loss of cancellous bone with an intact diaphysis. Cemented or cementless fixation can be utilised. If cemented fixation is selected, great care must be taken in removing the neo-cortex often encountered to allow for appropriate cement intrusion into the remaining cancellous bone. Type II: In a Type II femur, there is extensive loss of the metaphyseal cancellous bone and thus, fixation with cement is unreliable. In this cohort of patients, successful fixation was achieved using a diaphyseal fitting, extensively porous coated implant. However, as the metaphysis is supportive, a cementless implant that achieves primary fixation in the metaphysis can be utilised. Type IIIA: In a Type IIIA femur, the metaphysis is non-supportive and an extensively coated stem of adequate length is utilised to ensure that more than 4cm of scratch fit is obtained in the diaphysis. Type IIIB: Based on the poor results obtained with a cylindrical, extensively porous coated implant (with 4 of 8 reconstructions failing), our present preference is a modular, cementless, tapered stem with flutes for obtaining rotational stability. Type IV: The isthmus is completely non-supportive and the femoral canal is widened. Cementless fixation cannot be reliably used in our experience, as it is difficult to obtain adequate initial implant stability that is required for osseointegration. Reconstruction can be performed with impaction grafting if the cortical tube of the proximal femur is intact. However, this technique can be technically difficult to perform, time consuming and costly given the amount of bone graft that is often required. Although implant subsidence and peri-prosthetic fractures have been associated with this technique, it can provide an excellent solution for the difficult revision femur where cementless fixation cannot be utilised. Alternatively, an allograft-prosthesis composite can be utilised for younger patients in an attempt to reconstitute bone stock and a proximal femoral replacing endoprosthesis used for more elderly patients


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 67 - 67
1 Jun 2018
Gonzalez Della Valle A
Full Access

Uncontained acetabular defects with loss of superior iliac and posterior column support (Paprosky 3) represent a reconstructive challenge as the deficient bone will preclude the use of a conventional hemispherical cup. Such defects can be addressed with large metallic constructs like cages with and without allograft, custom tri-flange cups, and more recently with trabecular metal augments. An underutilised alternative is impaction bone grafting, after creating a contained cavitary defect with a reinforcement mesh. This reconstructive option delivers a large volume of bone while using a small-size socket fixed with acrylic cement. Between 2005 and 2014, 21 patients with a Paprosky 3B acetabular defect were treated with cancellous, fresh frozen impaction grafting supported by a peripheral reinforcement mesh secured to the pelvis with screws. A cemented all-polyethylene cup was used. Pre-operative diagnosis was aseptic loosening (15 cemented and 6 uncemented). The femoral component was revised in 10 patients. Post-operative course consisted of 3 months of protected weight bearing. Patients were followed clinically and radiographically. One patient had an incomplete post-operative sciatic palsy. After a mean follow up of 47 months (13 to 128) none of the patients required re-revision of the acetabular component. One asymptomatic patient presented with aseptic loosening 9 years post-operatively. Hardware failure was not observed. All patients had radiographic signs of graft incorporation and bone remodeling. There were no dislocations. The early and mid-term results of revisions of large acetabular defects with this technique are encouraging. Reconstitution of hip center of rotation and bone stock with the use of a small-size implant makes this technique an attractive option for large defects. Longer follow-up is needed to assess survivability


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 61 - 61
1 Jun 2018
Gehrke T
Full Access

Femoral revision after cemented total hip arthroplasty (THA) might include technical difficulties, following essential cement removal, which might lead to further loss of bone and consequently inadequate fixation of the subsequent revision stem. Bone loss may occur because of implant loosening or polyethylene wear, and should be addressed at time of revision surgery. Stem revision can be performed with modular cementless reconstruction stems involving the diaphysis for fixation, or alternatively with restoration of the bone stock of the proximal femur with the use of allografts. Impaction bone grafting (IBG) has been widely used in revision surgery for the acetabulum, and subsequently for the femur in Paprosky defects Type 1 or 2. In combination with a regular length cemented stem, impaction grafting allows for restoration of femoral bone stock through incorporation and remodeling of the proximal femur. Cavitary bone defects affecting the metaphysis and partly the diaphysis leading to a wide femoral canal are ideal indications for this technique. In case of combined segmental-cavitary defects a metal mesh is used to contain the defect which is then filled and impacted with bone grafts. Cancellous allograft bone chips of 2 to 4 mm size are used, and tapered into the canal with rods of increasing diameters. To impact the bone chips into the femoral canal a dummy of the dimensions of the definitive cemented stem is inserted and tapped into the femur to ensure that the chips are firmly impacted. Finally, a standard stem is implanted into the newly created medullary canal using bone cement. To date several studies from Europe have shown favorable results with this technique, with some excellent long-term results reported. Advantages of IBG include the restoration of the bone stock in the proximal femur, the use of standard length cemented stems and preserving the diaphysis for re-revision. As disadvantages of the technique: longer surgical time, increased blood loss and the necessity of a bone bank can be mentioned