Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 578 - 583
1 Mar 2021
Coulin B Demarco G Spyropoulou V Juchler C Vendeuvre T Habre C Tabard-Fougère A Dayer R Steiger C Ceroni D

Aims

We aimed to describe the epidemiological, biological, and bacteriological characteristics of osteoarticular infections (OAIs) caused by Kingella kingae.

Methods

The medical charts of all children presenting with OAIs to our institution over a 13-year period (January 2007 to December 2019) were reviewed. Among these patients, we extracted those which presented an OAI caused by K. kingae and their epidemiological data, biological results, and bacteriological aetiologies were assessed.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_3 | Pages 13 - 13
1 Jan 2013
Sanghrajka A Murnaghan C Simpson H Bellemore M Hill R
Full Access

Introduction. We report 3 cases from different centres of infantile tibia vara in which the deformity was due to slippage of the proximal tibial epiphysis on the metaphysis; the aim of this study was to define the features of this previously unreported condition, and their implications for management. Method. Three cases of tibia vara secondary to atraumatic slippage of the upper tibial epiphysis on the metaphysis were identified from three different centres. The case notes and imaging studies were retrospectively reviewed to distinguish common clinical and radiographic features. Results. There were one male and two females, all of non-Caucasian origin, (age 3–7 years). All patients' weights were above the 97th centile for age. In all cases there was an infero-medial subluxation of the tibial epiphysis over a dome shaped proximal tibial metaphysis, with disruption of continuity between their lateral borders. The height of the medial tibial plateau was preserved in all cases. New bone formation suggests this is a chronic process. The evolution of one case indicates that pathogenesis is shared with infantile Blount's disease. A gradual deformity correction was performed in all cases using circular external fixation, with the proximal ring secured to both the proximal epiphysis and metaphysis. Conclusion. Slipped upper tibial epiphysis is an uncommon but distinct cause of tibia vara. The radiological features are completely different from those previously described for infantile tibia vara and not encompassed by the existing classification. The unusual morphology has consequences for treatment. Management is analogous to a slipped upper femoral epiphysis – the physis has to be stabilized to the metaphysis and an osteotomy performed to restore the mechanical axis. We believe this is best achieved with a circular external fixator because this permits multiaxial correction including translation and rotation


The Bone & Joint Journal
Vol. 95-B, Issue 12 | Pages 1721 - 1725
1 Dec 2013
Banskota B Banskota AK Regmi R Rajbhandary T Shrestha OP Spiegel DA

Our goal was to evaluate the use of Ponseti’s method, with minor adaptations, in the treatment of idiopathic clubfeet presenting in children between five and ten years of age. A retrospective review was performed in 36 children (55 feet) with a mean age of 7.4 years (5 to 10), supplemented by digital images and video recordings of gait. There were 19 males and 17 females. The mean follow-up was 31.5 months (24 to 40). The mean number of casts was 9.5 (6 to 11), and all children required surgery, including a percutaneous tenotomy or open tendo Achillis lengthening (49%), posterior release (34.5%), posterior medial soft-tissue release (14.5%), or soft-tissue release combined with an osteotomy (2%). The mean dorsiflexion of the ankle was 9° (0° to 15°). Forefoot alignment was neutral in 28 feet (51%) or adducted (< 10°) in 20 feet (36%), > 10° in seven feet (13%). Hindfoot alignment was neutral or mild valgus in 26 feet (47%), mild varus (< 10°) in 19 feet (35%), and varus (> 10°) in ten feet (18%). Heel–toe gait was present in 38 feet (86%), and 12 (28%) exhibited weight-bearing on the lateral border (out of a total of 44 feet with gait videos available for analysis). Overt relapse was identified in nine feet (16%, six children). The parents of 27 children (75%) were completely satisfied.

A plantigrade foot was achieved in 46 feet (84%) without an extensive soft-tissue release or bony procedure, although under-correction was common, and longer-term follow-up will be required to assess the outcome.

Cite this article: Bone Joint J 2013;95-B:1721–5.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 789 - 796
1 Jun 2009
Hosalkar HS Greenbaum JN Flynn JM Cameron DB Dormans JP Drummond DS

Fractures of the odontoid in children with an open basilar synchondrosis differ from those which occur in older children and adults. We have reviewed the morphology of these fractures and present a classification system for them.

There were four distinct patterns of fracture (types IA to IC and type II) which were distinguished by the site of the fracture, the degree of displacement and the presence or absence of atlantoaxial dislocation. Children with a closed synchondrosis were classified using the system devised by Anderson and D’Alonzo. Those with an open synchondrosis had a comparatively lower incidence of traumatic brain injury, a higher rate of missed diagnosis and a shorter mean stay in hospital. Certain subtypes (type IA and type II) are likely to be missed on plain radiographs and therefore more advanced imaging is recommended. We suggest staged treatment with initial stabilisation in a Halo body jacket and early fusion for those with unstable injuries, severe displacement or neurological involvement.