Advertisement for orthosearch.org.uk
Results 1 - 20 of 59
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 599 - 599
1 Dec 2013
Maruyama M Yoshida K Kitagawa K
Full Access

We reported a case of the acetabular depression fracture in conjunction with a central fracture dislocation of the hip that was treated with a unique surgical technique. CASE REPORT:. A 76-year-old man suffered a left acetabular fracture with severe left hip joint pain and walking disability. Acetabular fracture was not apparent on the initial radiographs including anteroposterior and oblique views of the pelvis. However, computed tomography (CT) scanning showed displaced acetabular depression fracture (a third fracture fragment) in the center of the weight-bearing area with fracture of the ilium and spontaneous reposition of central dislocation of the hip (Fig. 1, 2). It seemed that this fracture fragment created incongruity of the acetabular articular surface and the potential for hip joint instability. Therefore, the patient was treated with open reduction and internal fixation. SURGICAL TECHNIQUE:. To perform the procedure, the patient was placed in the lateral decubitus position. A direct lateral approach to the hip was used for exposure. The vastus lateralis was released 1 cm distal from its origin, trochanteric osteotomy was done by the Gigli saw. To observe the hip articular surface and to identify the fracture fragment, the femoral head was posterior dislocated with excision of teres ligamentum after T-shaped capsulotomy. The depressed fragment in the acetabulum was identified under direct vision but could not be reduced. Therefore, the outer cortex of the ilium was fenestrated in a size of 2 × 2 cm so that a 1-cm-wide levator was inserted to the depressed fragment at 2 cm proximal from the hip articular surface through the fenestrated window (Fig. 3). Subsequently, the displaced bone fragment was pushed down by using the levator to the adequate articular joint level. The fragment was stabilized with packed cancellous bone graft harvested from the osteotomized greater trochanter. The removed outer cortex of the ilium from fenestrated site was repositioned and fixed by a reconstruction plate and screws. The osteotomized greater trochanter was reattached and fixed with two cannulated cancellous hip screws. RESULTS:. At 9-month follow-up, he was pain-free and continued to function well without the use of external supports. The acetabular depression fracture was completely reduced and healed in the CT scanning evaluation. The patient had no signs of posttraumatic osteoarthritis in radiographs. DISCUSSION and CONCLUSION:. In acetabular fracture dislocations of the hip joint, the precise pathological anatomy is not easily demonstrated by routine radiographs with classification of acetabular fractures. In our case, however, details of acetabular fracture were not well visible on conventional radiographs. It has been shown that computed tomography is useful method in precise evaluation of the fracture type with bone damage and integrity of joint configuration. Concerning approach to the fracture fragment which existed in the center of the weight bearing area of acetabulum, we performed to fenestrate on the intact bony cortex of the ilium just proximal to the fracture site. It was convenient and useful to gain good reduction of the central acetabular depression fracture, although there was no report on such a ‘fenestration’ method


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 3 - 3
10 Feb 2023
Sundaram A Woods J Clifton L Alt V Clark R Carey Smith R
Full Access

Complex acetabular reconstruction for oncology and bone loss are challenging for surgeons due to their often hostile biological and mechanical environments. Titrating concentrations of silver ions on implants and alternative modes of delivery allow surgeons to exploit anti-infective properties without compromising bone on growth and thus providing a long-term stable fixation. We present a case series of 12 custom acetabular tri-flange and custom hemipelvis reconstructions (Ossis, Christchurch, New Zealand), with an ultrathin plasma coating of silver particles embedded between layers of siloxane (BioGate HyProtect™, Nuremberg, Germany). At the time of reporting no implant has been revised and no patient has required a hospital admission or debridement for a deep surgical site infection. Routine follow up x-rays were reviewed and found 2 cases with loosening, both at their respective anterior fixation. Radiographs of both cases show remodelling at the ilium indicative of stable fixation posteriorly. Both patients remain asymptomatic. 3 patients were readmitted for dislocations, 1 of whom had 5 dislocations within 3 weeks post-operatively and was immobilised in an abduction brace to address a lack of muscle tone and has not had a revision of their components. Utilising navigation with meticulous implant design and construction; augmented with an ultrathin plasma coating of silver particles embedded between layers of siloxane with controlled and long-term generation of silver ion diffusion has led to outstanding outcomes in this series of 12 custom acetabular and hemipelvis reconstructions. No patients were revised for infection and no patients show signs of failure of bone on growth and incorporation. Hip instability remains a problem in these challenging mechanical environments and we continue to reassess our approach to this multifaceted problem


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 30 - 30
1 Dec 2022
McGoldrick N Cochran M Biniam B Bhullar R Beaulé P Kim P Gofton W Grammatopoulos G
Full Access

Short cementless femoral stems are increasingly popular as they allow for less dissection for insertion. Use of such stems with the anterior approach (AA) may be associated with considerable per-operative fracture risk. This study's primary aim was to evaluate whether patient-specific femoral- and pelvic- morphology and surgical technique, influence per-operative fracture risk. In doing so, we aimed to describe important anatomical thresholds alerting surgeons. This is a single-center, multi-surgeon retrospective, case-control matched study. Of 1145 primary THAs with a short, cementless stem inserted via the AA, 39 periprosthetic fractures (3.4%) were identified. These were matched for factors known to increase fracture risk (age, gender, BMI, side, Dorr classification, stem offset and indication for surgery) with 78 THAs that did not sustain a fracture. Radiographic analysis was performed using validated software to measure femoral- (canal flare index [CFI], morphological cortical index [MCI], calcar-calcar ratio [CCR]) and pelvic- (Ilium-ischial ratio [IIR], ilium overhang, and ASIS to greater trochanter distance) morphologies and surgical technique (% canal fill). Multivariate and Receiver-Operator Curve (ROC) analysis was performed to identify predictors of fracture. Femoral factors that differed included CFI (3.7±0.6 vs 2.9±0.4, p3.17 and II ratio>3 (OR:29.2 95%CI: 9.5–89.9, p<0.001). Patient-specific anatomical parameters are important predictors of fracture-risk. When considering the use of short stems via the AA, careful radiographic analysis would help identify those at risk in order to consider alternative stem options


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 110 - 110
1 May 2019
Abdel M
Full Access

Pelvic discontinuity is defined as a separation of the ilium superiorly from the ischiopubic segment inferiorly. In 2018, the main management options include the following: 1) hemispheric acetabular component with posterior column plating, 2) cup-cage construct, 3) pelvic distraction, and 4) custom triflange construct. A hemispheric acetabular component with posterior column plating is a good option for acute pelvic discontinuities. However, healing potential is dependent on host's biology and characteristic of the discontinuity. The plate should include 3 screws above and 3 screws below the discontinuity with compression in between. In addition, the hemispherical acetabular component should have at least 50% host bone contact with 3–4 screws superior and 2–3 screws inferior to the discontinuity. On the other hand, a cup-cage construct can be used in any pelvic discontinuity. This includes a highly porous acetabular component placed on remaining host bone. Occasionally, highly porous metal augments are used to fill the remaining bone defects. A supplemental cage is placed over the acetabular component, spanning the discontinuity from the ilium to the ischium. A polyethylene liner is then cemented into place with antibiotic-loaded bone cement. Rarely, pelvic distraction may be needed. With this technique, pelvic stability is obtained via distraction of the discontinuity by elastic recoil of the pelvis and by fixing the superior hemipelvis and inferior hemipelvis to a highly porous metal cup or augment with screws, thereby unitizing the superior and inferior aspects of the pelvis. In essence, the cup acts as a segmental replacement of the acetabulum, with healing occurring to the cup or augment, resulting in a unitised hemipelvis. Frequently, the discontinuity itself does not achieve bony healing. Finally, custom triflange constructs are being utilised with increasing frequency. Triflange cups are custom-designed, porous and/or hydroxyapatite coated, titanium acetabular components with iliac, ischial, and pubic flanges. Rigid fixation promotes healing of the discontinuity and biologic fixation of the implant. It requires a CT scan, dedicated preoperative design, and fabrication costs


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 68 - 68
1 Jun 2018
Gehrke T
Full Access

The treatment of extensive bone loss and massive acetabular defects is a challenging procedure, especially in cases with concomitant pelvic discontinuity (PD). Pelvic discontinuity describes the separation of the ilium proximally from the ischio-pubic region distally. The appropriate treatment strategy is to restore a stable continuity between the ischium and the ilium to reconstruct the anatomical hip center. Several treatment options such as antiprotrusio cages, metal augments, reconstruction cages with screw fixation, structural allograft with plating, jumbo cups, oblong cups and custom-made triflange acetabular components have been described as possible treatment options. Cage and/or ring constructs or acetabular allograft are commonly used techniques with unsatisfactory results and high failure rates. More favorable results have been presented with custom triflange acetabular components (CTAC), although the results are still unsatisfactory. Three-dimensional printing technology (3DP) has already become part of the surgical practice. In this context, preliminary clinical and radiological results using a 3D-printed custom acetabular component in the management of extensive acetabular defects are presented. The overall complication rate was 33.3 %. In one out of 15 patients (6.6 %), implant-associated complication occurred revealing an overall implant-associated survival rate of 93.3%. The 3D-printed custom acetabular component suggests a promising future, although the manufacturing process has high costs and the complication rate is still high


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 84 - 84
1 Jan 2016
Uemura K Takao M Sakai T Nishii T Sugano N
Full Access

Introduction. Support cages are often used for reconstruction of acetabular bone defects in revision total hip arthroplasty. A Burch-Schneider cage is one of the most reliable systems that has shown good clinical results. It has an ischial flange and an iliac plate for screw fixation to the ilium. It is sometimes necessary to bend the flange or the plate to fit the shape of the peri-acetabulum. However, the frequency, indications, and characteristics of bending the flange or plate have not been reported. To clarify them, a simulation study was conducted. Materials and methods. Twenty-five cases with acetabular bone defects of Paprosky type 2, 3, or 4 were the subjects of this study. A 3D template surgical simulation was conducted using 3D surface models of the Burch-Schneider cage and acetabulum. The size of the cage was determined by the size of the cavitary bone defect. Placement of the cage was performed in two ways. One was the iliac plate fitting method, in which fitting of the iliac plate to the ilium was performed first, followed by bending of the ischial flange to keep the flange in the center of the ischium. When bending of the flange was needed, it was bent at the base. The other method was the ischial flange fitting method, in which the ischial flange was inserted from the center of the ischium, followed by bending of the iliac flange to adapt to the ilium. When bending of the plate was needed, it was bent at the base. In both methods, the direction and angle of bending were measured. Results. In the iliac plate fitting method, the cage adapted the acetabulum without bending the ischial flange in 12 cases, and with lateral bending in 11 cases. The bending angle was less than 30° in 8 cases. Three cases required more than 30° of bending and there were also 2 cases which were impossible to fit the acetabulum even with bending the ischial flange. This was due to the large bone defect at the superolateral region of the acetabulum. In the ischial flange fitting method, the cage adapted the acetabulum without bending in 12 cases. The remaining 13 cases required less than 30° of iliac plate lateral bending. Discussion. The iliac plate fitting method is a clinically oriented method since the insertion position of the ischial flange is determined after fitting the provisional cage with an iliac plate. However, in cases with a large bone defect in the superolateral region of the acetabulum, some were impossible to fit. On the other hand, with the ischial flange fitting method, the cage could fit all types of acetabular defects. This suggests that, even in cases with a bone defect in the superolateral region of the acetabulum, the Burch-Schneider cage is a usable instrument. Conclusion. The half of the cases required lateral bending of the ischial flange or iliac plate. If there is a large bone defect at the superolateral region of the acetabulum, the iliac plate may need to be bent


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 59 - 59
1 Dec 2016
Engh C
Full Access

The custom triflange acetabular component has been advocated for severe acetabular defects and pelvic discontinuity, cases in which a porous-coated hemisphere will not work. These are AAOS type III or IV defects, or alternatively classified as Paprosky 3B. Many have a pelvic discontinuity. A preoperative CT of the pelvis is sent to the manufacturer who generates a one to one scale 3D model of the hemipelvis. If the visualised defect cannot be treated with traditional methods then a triflanged component is created. Initial rigid fixation is obtained with screw fixation to the ilium and ischium. Subsequent bone ingrowth can provide long term fixation. The goal is to span the acetabular defect and obtain fixation to ilium and ischium with a third flange which rests on the pubis. Christie first reported on 67 hips (half with a discontinuity) with a mean follow-up of 53 months. No components were removed. There was an 8% reoperation for dislocation, 6% partial sciatic nerve palsy. Dennis reported 26 hips with a mean 54 month follow-up. Eighty-eight percent were considered successful. Taunton reported 57 cases with a pelvic discontinuity treated with a triflange at mean follow-up of 65 months. Eighty-one percent had a stable component and a healed pelvic discontinuity. The primary disadvantage of the technique is the preoperative time required to manufacture the device – typically 4–8 weeks


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 42 - 42
1 Aug 2013
Murphy W Kowal J Murphy S
Full Access

Introduction. Conventional methods of aligning the acetabular component during hip arthroplasty and hip resurfacing often rely upon anatomic information available to the surgeon. Such anatomical information includes the transverse acetabular ligament and the locations of the pubis, ischium and ilium. The current study assesses the variation in orientation of the plane defined by the pubis, ischium and ilium on a patient-specific basis as measured by CT. Methods. To assess the reliability of anatomical landmarks in surgery, we assessed 54 hips in 51 patients (32 male, 22 female) who presented for CT-based surgical navigation of total hip arthroplasty. From a 3D model of each patient, standardised points for the anterior pelvic plane and landmarks on the ilium, ischium, and pubis were entered. The plane defined by the anatomical landmarks was calculated in degrees of operative anteversion and operative inclination according to the definitions of Murray. Results. The plane representing cup position defined by the anatomical landmarks ranged from 7.8° to 64.6° in operative anteversion (mean = 32.1°, SD = 15.0°) and 37.6° to 68.2° in operative inclination (mean = 53.2, SD = 7.1°). If a safe zone of 27 degrees of operative anteversion (± 10°) and 42 degrees of operative inclination (± 10°) is selected, 50.0% of hips are out of the safe zone in operative anteversion, and 57.4% of hips are out of the safe zone in operative inclination. Discussion and Conclusion. Surgeons have very specific and limited anatomical information available at the time of surgery to assist in determining optimal component orientation. Alignment relative to the operating table and intraoperative signs such as the co-planar test are unreliable due to the wide variation of position of the pelvis during surgery. This leaves anatomical landmarks that can be palpated during surgery as one remaining method upon which component orientation may be based. Unfortunately, these anatomical landmarks vary quite widely on an individual patient basis, with 83.3% of hips out of the a safe zone in this study of 27° of operative anteversion and 42° of operative inclination and 77.8% our of a safe zone of 20 degrees of operative anteversion and 45 degrees of operative inclination. As such, internal anatomical landmarks are likely to lead to systematically high incidences of component malposition such as those repeatedly documented in the literature. Based on the current study we conclude that, unless the orientation of the palpable anatomical landmarks is assessed in three-dimensions pre-operatively, these anatomical landmarks provide poor and sometimes dangerously misleading information


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 107 - 107
1 Sep 2012
Maruyama M
Full Access

BACKGROUND. Our modified procedure for rotational acetabular osteotomy (RAO) aimed to reduce operative invasion of soft tissue and to minimize incision length. SURGICAL TECHNIQUE. A shortened skin incision (10–15 cm versus 20–30 cm in traditional RAO) is curved over greater trochanter and exposed by transtrochanteric approach. Medial gluteus muscle is retracted to expose the ilium without detachment from iliac crest. Similarly the rectus femoris muscle tendon was retracted, not excised, from the anterior inferior iliac spine. The lateral part of the osteotomized ilium is cut in lunate and trapezoid shape to form the bone graft instead of the outer cortical bone of the ilium. PATIENTS. We performed RAO on 66 patients (75 hips) using this modified procedure between 2000 and 2009. Follow-up rate was 95% (71/75 hips). Of 71 hips, 28 had early-stage, and 43 had advanced-stage osteoarthritis. Mean patient age was 39.7 years at time of surgery. Mean length of follow-up was 5.3 years. Clinical assessment was performed using the Merle d'Aubigne & Postel scores. Radiographically, the lateral center-edge (CE) angle, the Sharp angle and acetabular head index (AHI) were evaluated pre- and post-operatively. RESULTS. Mean CE angle, Sharp angle and AHI improved pre- to post-operatively from −1.3 degrees to 36.5 degrees (p<0.00001), 50.3 degrees to 39.4 degrees (p<0.00001), 54.0 % to 95.7 % (p<0.00001), respectively. Clinical hip scores at latest follow-up were significantly improved. No progression of osteoarthritis was seen in hips with early-stage osteoarthritis. Ten hips with advanced-stage osteoarthritis preoperatively had radiographic evidence of progression of osteoarthritis, and six of those were converted to total hip arthroplasty. Complications included two transient lateral femoral cutaneous nerve palsies and ectopic bone formation in 15 hips, one of which required excision 1.5 years post-RAO. Kaplan-Meier survivorship analysis, with decreased clinical scores from pre-operatively and radiographic signs of progression of osteoarthritis as the end point, predicted a 10-year survival rate of 100% for early-stage osteoarthritis hips and 72.1 % for advanced-stage osteoarthritis. CONCLUSIONS. Less invasive surgical procedure for RAO preserved function of hip abductor muscle and did not adversely influence on clinical or radiographic outcome


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 443 - 443
1 Dec 2013
Murphy S Murphy W Kowal JH
Full Access

Introduction:. Conventional methods of aligning the acetabular component during hip arthroplasty and hip resurfacing often rely upon anatomic information available to the surgeon. Such anatomical information includes the transverse acetabular ligament and the locations of the pubis, ischium and ilium. The current study assesses the variation in orientation of the plane defined by the pubis, ischium and ilium on a patient-specific basis as measured by CT. Methods:. To assess the reliability of anatomical landmarks in surgery, we assessed 54 hips in 51 patients (32 male, 22 female) who presented for CT-based surgical navigation of total hip arthroplasty. The HipSextant Research Application (version 1.0.7, Surgical Planning Associates Inc., Boston, Massachusetts) was used to perform the calculations. This application allows for determination of the Anterior Pelvic Plane coordinates from a 3D surface model. Standardized points on the ilium, ischium, and pubis were entered. These three points defined a plane and the orientation of the plane in the AP Plane coordinate system was calculated in degrees of operative anteversion and operative inclination according to the definitions of Murray. 1. . Results:. The plane representing cup position defined by the anatomical landmarks ranged from 7.8° to 64.6° in operative anteversion (mean = 32.1°, SD = 15.0°) and 37.6° to 68.2° in operative inclination (mean = 53.2, SD = 7.1°). If a safe zone of 27 degrees of operative anteversion (± 10°) and 42 degrees of operative inclination (± 10°) is selected, 50.0% of hips are out of the safe zone in operative anteversion, and 57.4% of hips are out of the safe zone in operative inclination. 83.3% of all hips are out of the safe zone in either operative anteversion, operative inclination, or both. If a safe zone of 20° of operative anteversion (± 10°) and 45° of operative inclination (± 10°) is assumed, 55.6% of hips are out of the safe zone in operative anteversion, 44.4% of hips are out of the safe zone in operative inclination, and 77.8% of hips are out of safe zone for either anteversion or inclination. Discussion and Conclusion:. Surgeons have very specific and limited anatomical information available at the time of surgery to assist in determining optimal component orientation. Alignment relative to the operating table and intraoperative signs such as the co-planar test are unreliable due to the wide variation of position of the pelvis during surgery. This leaves anatomical landmarks that can be palpated during surgery as one remaining method upon which component orientation may be based. Unfortunately, these anatomical landmarks vary quite widely on an individual patient basis, with 77.8% out of a safe zone of 20 degrees of operative anteversion and 45 degrees of operative inclination +/− 10 degrees. As such, internal anatomical landmarks are likely to lead to systematically high incidences of component malposition such as those repeatedly documented in the literature. Based on the current study we conclude that, unless the orientation of the palpable anatomical landmarks is assessed in three-dimensions pre-operatively, these anatomical landmarks provide poor and sometimes dangerously misleading information


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 57 - 57
1 Feb 2020
Abe S Iwata H Ezaki A Ishida H Sakata K Matsuoka H Sogou E Nannno K Kuroda S Nakamura S Hayashi J Nakai T
Full Access

A-70-year old woman underwent uncomplicated total hip arthroplasty using a titanium modular stem with a 46mm CoCr femoral head, a titanium shell, and a metal linear (Wright Medical Technology). Eight years after implantation, she presented with a painful left hip. A pelvic radiograph revealed adequate positioning of both hip implants without any signs of wear of loosening. CT scanning confirmed the presence of a 5 × 5 cm soft tissue mass in the ilium above the cup component accompanied by the iliac fracture. The patient was diagnosed as having an adverse reaction to metal debris (ARMD) after a metal-on-metal THA and revision was performed. Perioperatively?tissue necrosis and partial destruction of the abductor mechanism were found in the absence of any macroscopic infection. Both the neck trunnion and bore of the head showed slight signs of corrosion. The modular neck was revised with a ceramic 28mm head and a new dual-mobility liner(Zimmer Biomet). The iliac fracture was fixed with a porous trabecular metal augment(Zimmer Biomet). The histopathology of tissue sample revealed extensively necrotic material with focal cellular areas of inflammatory cells containing macrophages and neutrophilas. Metalic debris was also scattered in the necrotic materials. After the revision, the patient was recovered without pain or dislocation, and iliac fracture was well fixed. Instability is a substantial problem in the revision of ARMD. Extensive necrosis with gross deficiency of the abductor mechanism is associated with postoperative dislocation. Revision of failed MoM THA a dual-mobility device an effective strategy


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 6 - 6
1 Jul 2020
Paserin O Garbi R Hodgson A Cooper A Mulpuri K
Full Access

Dynamic 2D sonography of the infant hip is a commonly used clinical procedure for developmental dysplasia of the hip (DDH) screening. It however has been found to be unreliable with some studies reporting associated misdiagnosis rates of up to 29%. In a recent systematic review, Charlton et al. examined dynamic ultrasound (US) screening for hip instability in the first six weeks after birth and found current best practices for such early screening techniques to be divergent between international institutions in terms of clinical scanning protocols. Such protocols include: the appropriate scanning plane and US probe position (e.g. coronal, transverse, lateral, anterior), DDH diagnostic metrics (e.g. femoral head coverage, alpha angle), appropriate patient age when scanning, and follow up procedures. To improve reliability of diagnosis and to help in standardizing diagnosis across different raters and health-centers, we propose an automated method for dynamically assessing hip instability using 3D US. 38 infant hips from 19 patients were scanned with B-mode 3D US by a paediatric orthopaedic surgeon and two technologists from the radiology department at a paediatric tertiary care centre. To quantify hip assessment, we proposed the use of femoral head coverage variability (ΔFHC3D) within 3D US volumes collected during a sequence of US scans (one at rest, and another with posterior stress applied to the joint as maneuvered during a dynamic assessment). We used phase symmetry image features to localize the ilium's vertical cortex and a random forest classifier to identify the location of the femoral head. The proposed ΔFHC3D provided good repeatability with an average test-retest ICC measure of 0.70 (95% confidence interval: 0.35 to 0.87, F(21,21) = 7.738, p<.001). The mean difference of ΔFHC3D measurements was 0.61% with a SD of 4.05%. Since the observed changes in ΔFHC3D start near 0% and range up to about 18% from stable to mildly unstable hips in this cohort, the mean difference and standard deviation of ΔFHC3D measurements observed suggest that the proposed metric and technique likely have sufficient resolution and repeatability to quantify differences in hip laxity. The long-term significance of this approach to evaluating dynamic assessments may lie in increasing early diagnostic accuracy in order to prevent dysplasia remaining undetected prior to manifesting itself in early adulthood joint disease


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 105 - 105
1 Nov 2015
Engh C
Full Access

The custom triflange acetabular component has been advocated for severe acetabular defects and pelvic discontinuity, cases in which a porous-coated hemisphere will not work. These are AAOS type III or IV defects, or alternatively classified as Paprosky 3B. Many have a pelvic discontinuity. A pre-operative CT of the pelvis is sent to the manufacturer who generates a one-to-one scale 3D model of the hemipelvis. The surgeon can review either a pdf file or an actual model. If the visualised defect cannot be treated with traditional methods then a triflanged component is created. The components have backside porous and hydroxyapatite coating. Initial rigid fixation is obtained with screw fixation to the ilium and ischium. Subsequent bone ingrowth can provide long term fixation. The goal is to span the acetabular defect and obtain fixation to the ilium and ischium with a third arm which rests on the pubis. Christie first reported on 67 hips (half with a discontinuity) with a mean follow-up of 53 months. No components were removed. There was an 8% reoperation for dislocation, 6% partial sciatic nerve palsy. 46% walked without support. Dennis reported 26 hips with a mean 54 month follow-up. Eighty-eight percent were considered successful. One implant was removed and left with a resection arthroplasty and 2 others had loose components but refused reoperation. Loosening of the ischial screws was a sign of failure in the three cases. Taunton reported 57 cases with a pelvic discontinuity treated with a triflange at mean follow-up of 65 months. Eighty-one percent had a stable component and a healed pelvic discontinuity. These authors also compared a custom triflange to a trabecular metal cup-cage construct finding similar implant costs of $12,500 and $11,250, respectively. All advocates of custom triflange acetabular components believe the results are similar or superior to other options in these very challenging cases at early follow-up. The primary disadvantage of the technique is the pre-operative time required to manufacture the device – typically 4–8 weeks


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 4 - 4
1 Jan 2016
Todo M Abdullah AH Nakashima Y Iwamoto Y
Full Access

Bone remodeling effects is a significant issue in predicting long term stability of hip arthroplasty. It has been frequently observed around the femoral components especially with the implantation of prosthesis stem. Presence of the stiffer materials into the femur has altering the stress distribution and induces changes in the architecture of the bone. Phenomenon of bone resorption and bone thickening are the common reaction in total hip arthroplasty (THA) which leading to stem loosening and instability. The objectives of this study are (i) to develop inhomogeneous model of lower limbs with hip osteoarthritis and THA and (ii) to predict the bone resorption behavior of lower limbs for both cases. Biomechanical evaluations of lower limbs are established using the finite element method in predicting bone remodeling process. Lower limbs CT-based data of 79 years old female with hip osteoarthritis (OA) are used in constructing three dimensional inhomogenous models. The FE model of lower limbs was consisted of sacrum, left and right ilium and both femur shaft. Bond between cartilage, acetabulum and femoral head, sacrum and ilium were assumed to be rigidly connected. The inhomogeneous material properties of the bone are determined from the Hounsfield unit of the CT image using commercial biomedical software. A load case of 60kg body weight was considered and fixed at the distal cut of femoral shaft. For THA lower limbs model, the left femur which suffering for hip OA was cut off and implanted with prosthesis stem. THA implant is designed to be Titanium alloy and Alumina for stem and femoral ball, respectively. Distribution of young modulus of cross-sectional inhomogeneous model is presented in Fig. 2 while model of THA lower limbs also shown in Fig. 2. Higher values of young modulus at the outer part indicate hard or cortical bone. Prediction of bone resorption is discussed with the respect of bone mineral density (BMD). Changes in BMD at initial age to 5 years projection were simulated for hip OA and THA lower limbs models. The results show different pattern of stress distribution and bone mineral density between hip OA lower limbs and THA lower limbs. Stress is defined to be dominant at prosthesis stem while femur experienced less stress and leading to bone resorption. Projection for 5 years follow up shows that the density around the greater tronchanter appears to decrease significantly


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 64 - 64
1 Feb 2015
Engh C
Full Access

The custom triflange acetabular component has been advocated for severe acetabular defects and pelvic discontinuity, cases in which a porous-coated hemisphere will not work. These are AAOS type III or IV defects, or alternatively classified as Paprosky 3B. Many have a pelvic discontinuity. A preoperative CT of the pelvis is sent to the manufacturer who generates a one-to-one scale 3D model of the hemipelvis. The surgeon can review either a pdf file or an actual model. If the visualised defect cannot be treated with traditional methods then a triflanged component is created. The components have backside porous and hydroxyapatite coating. Initial rigid fixation is obtained with screw fixation to the ilium and ischium. Subsequent bone ingrowth can provide long term fixation. The goal is to span the acetabular defect and obtain fixation to ilium and ischium with a third arm which rests on the pubis. Christie first reported on 67 hips (half with a discontinuity) with a mean follow-up of 53 months. No components were removed. There was an 8% reoperation for dislocation, 6% partial sciatic nerve palsy. 46% walked without support. Dennis reported 26 hips with a mean 54 month follow-up. 88% were considered successful. One implant was removed and left with a resection arthroplasty and 2 others had loose components but refused reoperation. Loosening of the ischial screws was a sign of failure in the three cases. Taunton reported 57 cases with a pelvic discontinuity treated with a triflange at mean follow-up of 65 months. 81% has a stable component and a healed pelvic discontinuity. These authors also compared a custom triflange to a trabecular metal cup-cage construct finding similar implant costs of $12,500 and $11,250, respectively. All advocates of custom triflange acetabular components believe the results are similar or superior to other options in these very challenging cases at early follow-up. The primary disadvantage of the technique is the preoperative time required to manufacture the device – typically 4–8 weeks


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 115 - 115
1 May 2019
Berry D
Full Access

The main challenges in hip arthrodesis takedown include the decision to perform fusion takedown and the technical difficulties of doing so. In addition to the functional disadvantages of hip fusion, the long-term effects of hip arthrodesis include low back pain and in some cases ipsilateral knee pain. Indications for fusion conversion to THA include arthrodesis malposition, pseudoarthrosis, and ipsilateral knee, low back, contralateral hip problems, and functional disadvantages of ipsilateral hip fusion. When deciding whether or not to take down fusion, consider the severity of the current problem, risks of takedown and likely benefits of takedown. Best results of fusion takedown occur if abductor function is likely to be present. If the abductors are not likely to function well, dearthrodesis may still help, but the patient will have a profound Trendelenburg or Duchenne gait and risk of hip instability will be higher. Abductor assessment can be performed by determining if the abductors contract on physical exam and determining if the previous form of fusion spared the abductors and greater trochanter. EMG and MRI also can be performed to assess the abductors, but value in this setting is unproven. Before dearthrodesis establish realistic expectations: most patients will gain hip motion—but not normal motion, most will see improvement in back/knee pain, but many will become cane-dependent for life. The main technical issues to overcome involve exposure, femoral neck osteotomy, acetabular preparation, and femoral fixation. Exposure can be conventional posterior, anterolateral or direct anterior with an in-situ femoral neck cut. In complex cases, a transtrochanteric approach is often helpful. The in-situ neck cut is facilitated by fluoroscopy or intraoperative radiograph to make sure the cut is at the correct level and at the correct angle. Be careful not to angle into the pelvis with the cut. Acetabular preparation is more complex because anatomic landmarks often are absent or distorted. Try to find landmarks including ischium, ilium, teardrop, and fovea. Confirm location with fluoroscopy as reaming commences and during reaming. Depth of reaming can be improved by using the fovea (if present) and teardrop on fluoroscopy. Cup fixation is usually an uncemented cup, fixed with multiple screws because bone quality typically is compromised. Femoral fixation is at the surgeon's discretion, recognizing the proximal bone may be distorted in some cases. Postoperative management includes protected weight bearing as needed and heterotopic bone prophylaxis in selected patients


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 116 - 116
1 May 2019
Lewallen D
Full Access

The direct lateral (or anterolateral) approaches to the hip for revision THA involve detachment of the anterior aspect of the gluteus medius from the trochanter along with a contiguous sleeve of the vastus lateralis. Anterior retraction of this flap of gluteus medius and vastus lateralis and simultaneous posterior retraction of the femur creates an interval for division of gluteus minimus and deeper capsular tissues and exposure of the joint. To enhance reattachment of this flap of the anterior portion of the gluteus medius and vastus lateralis back to the trochanter, an oblique wafer of bone can be elevated along with the muscle off of the anterolateral portion of the trochanter. This bony wafer prevents suture pull out when large nonabsorbable sutures are used around or through the fragment and passed into the bone of the trochanteric bed for reattachment during closure. To prevent excessive splitting proximally into the gluteus medius muscle (and resulting damage to the superior gluteal nerve), it is often helpful to extend the muscle split further distally down into the vastus lateralis. This combined with careful elevation of the gluteal muscles off of the ilium (instead of splitting them) helps provide excellent and safe exposure of the entire rim of the acetabulum and access to the supracetabular region for bone grafting, acetabular augment placement and even fixation of the flanges of a cage. A simple method for posterior column plating via the anterolateral approach involves contouring of the distal end of the plate around the base of the ischium at the inferior edge of the socket. When an extended osteotomy of the femur is needed to correct deformity, remove a well-fixed implant or cement, the “extensile” variation of this same surgical approach involves a Wagner style (lateral to medial) osteotomy of the greater trochanter and proximal femur. The anterior portion of the femur after it is osteotomised is elevated as a separate segment while maintaining the soft tissue attachments to the bone as much as possible to aid osteotomy healing. After implant or cement removal, this approach gives excellent direct access to the distal femur for placement of a long stem revision femoral component without bone-implant conflict proximally because of the bow of the femur. The anterolateral approach (and extensile variants detailed above) can be used routinely and safely in the full range of revision THA procedures, or it can be employed selectively, if desired, in cases at increased risk for dislocation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 100 - 100
1 Aug 2017
Gehrke T
Full Access

The treatment of extensive bone loss and massive acetabular defects is a challenging procedure, especially the concomitant pelvic discontinuity (PD) can be compounded by several challenges and pitfalls. The appropriate treatment strategy is to restore a stable continuity between the ischium and the ilium and to reconstruct the anatomical hip center. Antiprotrusio cages, metal augments, reconstruction cages with screw fixation, structural allograft with plating, jumbo cups, oblong cups and custom-made triflange acetabular components have been reported as possible treatment options. Nevertheless, the survivorship following acetabular revision with extensive bone loss is still unsatisfactory. The innovation of three-dimensional printing (3DP) has become already revolutionary in engineering and product design. Nowadays, the technology is becoming part of surgical practice and suitable for the production of precise and bespoke implants. The technique of a 3D-printed custom acetabular component in the management of extensive acetabular defect is presented


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 82 - 82
1 Dec 2018
Hackl S Greipel J Von Rüden C Bühren V Militz M
Full Access

Aim. Posttraumatic pelvic-osteomyelitis is one of the most serious complications after pelvic-fractures. The necessary extensive surgical debridement as part of interdisciplinary treatment is complicated by the possible persistence of pelvic instability. The aim of this study was to determine the outcome and outline the course of treatment after early posttraumatic pelvic bone infections due to type-C pelvic ring injuries. Method. In a retrospective cohort study (2005–2015) all patients with pelvic-osteomyelitis within six weeks of surgical stabilization of a type-C pelvic-fracture were assessed. Microbiological results, risk factors, course of treatment and functional long-term outcome using the Orlando-Pelvic-Score were analyzed. Results. A total of 18 patients (age 43.7 years; Body-Mass-Index 27.9 kg/m2; ASA-physical-status 1.8; Injury-Severity-Score 38) developed a pelvic-osteomyelitis within an average of 27 days after internal surgical stabilization of a type-C pelvic injury (AO-type C1: 10, C2: 4, C3: 4). Os pubis was affected in 7 and Os ilium in 11 cases. In addition to the pelvic-fracture, major vascular injuries occurred in 8, nerve injuries in 9, and intestinal and/or bladder ruptures in 11 cases. In 14 cases a mass transfusion was necessary. In addition to clinical signs of inflammation, (10 × redness, 12 × wound secretion, 6 × fistula) elevated levels of c-reactive-protein (7.7 mg/dl) and white-blood-cells (10.5/nl) were found. Bacterial cultures harvested during the initial surgical revision demonstrated mixed cultures in 17/18 cases, with an average of 3 different organisms isolated per case (61% intestinal bacteria). During the scheduled repetitive debridement a reduction of the initial mixed cultures into a single organism was observed. Overall 6.8 surgical interventions, including implant removal, were necessary until osteomyelitis was eradicated. In no cases was re-osteosynthesis performed. In 6/18 cases recurrence of infection occurred after an average of 5 months, followed by an additional repetitive debridement. An average 3-year-follow-up after the initial osteomyelitis-diagnosis demonstrated eradication of infection in 17/18 cases combined with an Orlando-Pelvic-Score of 21.9 points (best possible function: 40 points). Despite significant pelvic malalignment the ability to walk was achieved in all patients, with one exception due to a spinal cord injury. Conclusions. Despite no new surgical stabilization of the initial unstable pelvic injury, the early removal of implants combined with extensive debridement and antibiotic therapy led to sufficient long-term outcomes in patients with early posttraumatic pelvic-osteomyelitis. In particular, due to the severity of the initial injury and the complex interdisciplinary approach, early diagnosis of the osteomyelitis is essential


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 98 - 98
1 Aug 2017
Ries M
Full Access

Most acetabular defects can be treated with a cementless acetabular cup and screw fixation. However, larger defects with segmental bone loss and discontinuity often require reconstruction with augments, a cup-cage, or triflange component – which is a custom-made implant that has iliac, ischial, and pubic flanges to fit the outer table of the pelvis. The iliac flange fits on the ilium extending above the acetabulum. The ischial and pubic flanges are smaller than the iliac flange and usually permit screw fixation into the ischium and pubis. The custom triflange is designed based on a pre-operative CT scan of the pelvis with metal artifact reduction, which is used to generate a three-dimensional image of the pelvis and triflange component. The design of the triflange involves both the manufacturing engineer and surgeon to determine the most appropriate overall implant shape, screw fixation pattern, and cup location and orientation. A plastic model of the pelvis, and triflange implant can be made in addition to the triflange component to be implanted, in order to assist the surgeon during planning and placement of the final implant in the operating room. A wide surgical exposure is needed including identification of the sciatic nerve. Proximal dissection of the abductors above the sciatic notch to position the iliac flange can risk denervation of the abductor mechanism. Blood loss during this procedure can be excessive. Implant survivorship of 88 to 100% at 53-month follow-up has been reported. However, in a series of 19 patients with Paprosky type 3 defects, only 65% were considered successful. The custom triflange also tends to lateralise the hip center which may adversely affect hip mechanics. The use of a triflange component is indicated in cases with massive bone loss or discontinuity in which other reconstructive options are not considered suitable