The effects of the method of fixation and interface conditions on the biomechanics of the femoral component of the Birmingham
The aim of our study was to investigate whether placing of the femoral component of a
A total of 20 pairs of fresh-frozen cadaver femurs were assigned to four alignment groups consisting of relative varus (10° and 20°) and relative valgus (10° and 20°), 75 composite femurs of two neck geometries were also used. In both the cadaver and the composite femurs, placing the component in 20° of valgus resulted in a significant increase in load to failure. Placing the component in 10° of valgus had no appreciable effect on increasing the load to failure except in the composite femurs with varus native femoral necks. Specimens in 10° of varus were significantly weaker than the neutrally-aligned specimens. The results suggest that retention of the intact proximal femoral strength occurs at an implant angulation of ≥ 142°. However, the benefit of extreme valgus alignment may be outweighed in clinical practice by the risk of superior femoral neck notching, which was avoided in this study.
Bone surface strains were measured in cadaver femora during loading prior to and after resurfacing of the hip and total hip replacement using an uncemented, tapered femoral component. In vitro loading simulated the single-leg stance phase during walking. Strains were measured on the medial and the lateral sides of the proximal aspect and the mid-diaphysis of the femur. Bone surface strains following femoral resurfacing were similar to those in the native femur, except for proximal shear strains, which were significantly less than those in the native femur. Proximomedial strains following total hip replacement were significantly less than those in the native and the resurfaced femur. These results are consistent with previous clinical evidence of bone loss after total hip replacement, and provide support for claims of bone preservation after resurfacing arthroplasty of the hip.
Abstract. Objectives. Although hip replacement and resurfacing procedures both aim to restore mobility, improve joint function, and relieve pain, it is unclear how each differ in terms of gait mechanics and if they are affected by varying walking speeds. We compared limb symmetry and ground reaction force (GRF) profiles between bilateral total hip arthroplasty patients (THA), bilateral
Introduction. The treatment of osteonecrosis of the femoral head (ONFH) in young and active patients remains a challenge. The purpose of this study was to determine and compare the clinical and radiographic results of the two different
Financial and human cost effectiveness is an increasing evident outcome measure of surgical innovation. Considering the human element, the aim is to restore the individual to their “normal” state by sparing anatomy without compromising implant performance. Gait lab studies have shown differences between different implants at top walking speed, but none to our knowledge have analysed differing total hip replacement patients through the entire range of gait speed and incline to show differences. The purpose of this gait study was to 1) determine if a new short stem femoral implant would return patients back to normal 2) compare its performance to established
Patients undergoing
The renewed interest in the clinically proven low wear of the metal-on-metal bearing combined with the capacity of inserting a thin walled cementless acetabular component has fostered the reintroduction of
Introduction of new implants has been widely debated lately, mainly in response to the problems surrounding
Background.
We report the survival, functional and radiological outcome of a series of Birmingham
Patients report similar or better pain and function before revision hip arthroplasty than before primary arthroplasty but poorer outcomes after revision surgery. The trajectory of post-operative recovery during the first 12 months and any differences by type of surgery have received little attention. We explored the trajectories of change in pain and function after revision hip arthroplasty to 12-months post-operatively and compared them with those observed after primary hip arthroplasty. We conducted a single-centre UK cohort study of patients undergoing primary (n = 80) or revision (n = 43) hip arthroplasty. WOMAC pain and function scores and 20-metres walking time were collected pre-operatively, at 3 and 12-months post-operatively. Multilevel regression models were used to chart and compare the trajectories of post-operative change (0–3 months and 3–12 months) between the types of surgery. Patients undergoing primary arthroplasty had a total hip replacement (n=74) or
Positioning of the
A cadaver study using six pairs of lower limbs was conducted to investigate the accuracy of computer navigation and standard instrumentation for the placement of the Birmingham Hip Resurfacing femoral component. The aim was to place all the femoral components with a stem-shaft angle of 135°. The mean stem-shaft angle obtained in the standard instrumentation group was 127.7° (120° to 132°), compared with 133.3° (131° to 139°) in the computer navigation group (p = 0.03). The scatter obtained with computer-assisted navigation was approximately half that found using the conventional jig. Computer navigation was more accurate and more consistent in its placement of the femoral component than standard instrumentation. We suggest that image-free computer-assisted navigation may have an application in aligning the femoral component during
The aim of this study was to report the procedure survival and patient-reported outcomes in a consecutive series of patients <50yrs at the time of hip arthroplasty with a metal-on-metal hip resurfacing system who have progressed to a minimum of 10yrs follow-up. Patients presenting for treatment of degenerative conditions of the hip electing to undergo
Finite element analysis was used to examine the initial stability after