Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 91 - 91
1 Nov 2021
Aljasim O Yener C Demirkoparan M Bilge O Küçük L Gunay H
Full Access

Introduction and Objective. Zone 2 flexor tendon injuries are still one of the challenges for hand surgeons. It is not always possible to achieve perfect results in hand functions after these injuries. There is no consensus in the literature regarding the treatment of zone 2 flexor tendon injuries, tendon repair and surgical technique to be applied to the A2 pulley. The narrow fibro-osseous canal structure in zone 2 can cause adhesions and loss of motion due to the increase in tendon volume due to surgical repair. Different surgical techniques have been defined to prevent this situation. In our study, in the treatment of zone 2 flexor tendon injuries; Among the surgical techniques to be performed in addition to FDP tendon repair; We aimed to compare the biomechanical results of single FDS slip repair, A2 pulley release and two different pulley plasty methods (Kapandji and V-Y pulley plasty). Materials and Methods. In our study, 12 human upper extremity cadavers preserved with modified Larssen solution (MLS) and amputated at the mid ½ level of the arm were used. A total of 36 fingers (second, third and the fourth fingers were used for each cadaver) were divided into four groups and 9 fingers were used for each group. With the finger fully flexed, the FDS and FDP tendons were cut right in the middle of the A2 pulley and repaired with the cruciate four-strand technique. The surgical techniques described above were applied to the groups. Photographs of fingers with different loads (50 – 700 gr) were taken before and after the application. Proximal interphalangeal (PIP) joint angle, PIP joint maximum flexion angle and bowstring distance were measured. The gliding coefficient was calculated by applying the PIP joint angle to the single-phase exponential association equation. Results. Gliding coefficient after repair increased by %21.46 ± 44.41, %62.71 ± 116.9, %26.8 ± 35.35 and %20.39 ± 28.78 in single FDS slip repair, A2 pulley release, V-Y pulley plasty and Kapandji plasty respectively. The gliding coefficient increased significantly in all groups after surgical applications (p<0.05). PIP joint maximum flexion angle decreased by %3.17 ± 7.92, %12.82 ± 10.94, %8.33 ± 3.29 and %7.35 ± 5.02 in single FDS slip repair, A2 pulley release, V-Y pulley plasty and Kapandji plasty respectively. PIP joint maximum flexion angle decreased significantly after surgery in all groups (p<0.05). However, there was no statistically significant difference between surgical techniques for gliding coefficient and PIP joint maximum flexion angle. Bowstring distance between single FDS slip repair, kapandji pulley plasty and V-Y pulley plasty showed no significant difference in most loads (p>0.05). Bowstring distance was significantly increased in the A2 pulley release group compared to the other three groups (p<0.05). Conclusion. Digital motion was negatively affected after flexor tendon repair. Similar results were found in terms of gliding coefficient and maximum flexion angle among different surgical methods. As single FDS slipe repair preserves the anatomical structure of the A2 pulley therefore we prefer it as an ideal method for zone 2 flexor tendon repair. However, resection of FDS slip may jeopardizes nutrition to the flexor digitorum profundus tendon which weakens the repair site. Therefore the results must be confirmed by an in vivo study before a clinical recommendation can be made. Keywords: Flexor tendon; injury; pulley plasty; cadaver;


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 63 - 63
1 Apr 2017
Al-Azzani W Hill C Passmore C Czepulkowski A Mahon A Logan A
Full Access

Background. Patients with hand injuries frequently present to Emergency Departments. The ability of junior doctors to perform an accurate clinical assessment is crucial in initiating appropriate management. Objectives. To assess the adequacy of junior doctor hand examination skills and to establish whether further training and education is required. Methods. A double-centre study was conducted using an anonymous survey assessing hand examination completed by junior doctors (Foundation year 1 and Senior House Officer grades) working in Trauma & Orthopaedics or Emergency Departments. The survey covered all aspects of hand examination including assessment of: Flexor and Extensor tendons, Nerves (motor and sensory) and Vascular status. Surveys were marked against answers pre-agreed with a Consultant hand surgeon. Results. 32 doctors completed the survey. Tendons: 59% could accurately examine extensor digitorum, 41% extensor pollicis longus, 38% flexor digitorum profundus and 28% flexor digitorum superficialis. Nerves – Motor: 53% could accurately examine the radial nerve, 37% the ulnar nerve, 22% the median nerve and 9% the anterior interosseous nerve. Nerves – Sensory: 88% could accurately examine the radial nerve, 81% the ulnar nerve, 84% the median nerve and 18.8% digital nerves. Vascular: 93% could describe 3 methods of assessing vascularity. Conclusions. Tendon and neurological aspects of hand clinical examination were poorly executed at junior doctor level in this pragmatic survey. This highlights the need for targeted education and training to improve the accuracy of junior doctor hand injury assessment and subsequent improving patient treatment and safety. Recommendations include dedicated hand examination teaching early in Orthopaedic/A&E placements and introduction of an illustrated Hand Trauma Examination Proforma. Level of evidence. III - Evidence from case, correlation, and comparative studies


Bone & Joint 360
Vol. 7, Issue 3 | Pages 38 - 39
1 Jun 2018
Das A


Bone & Joint Research
Vol. 6, Issue 8 | Pages 464 - 471
1 Aug 2017
Li QS Meng FY Zhao YH Jin CL Tian J Yi XJ

Objectives

This study aimed to investigate the functional effects of microRNA (miR)-214-5p on osteoblastic cells, which might provide a potential role of miR-214-5p in bone fracture healing.

Methods

Blood samples were obtained from patients with hand fracture or intra-articular calcaneal fracture and from healthy controls (HCs). Expression of miR-214-5p was monitored by qRT-PCR at day 7, 14 and 21 post-surgery. Mouse osteoblastic MC3T3-E1 cells were transfected with antisense oligonucleotides (ASO)-miR-214-5p, collagen type IV alpha 1 (COL4A1) vector or their controls; thereafter, cell viability, apoptotic rate, and the expression of collagen type I alpha 1 (COL1A1), type II collagen (COL-II), and type X collagen (COL-X) were determined. Luciferase reporter assay, qRT-PCR, and Western blot were performed to ascertain whether COL4A1 was a target of miR-214-5p.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 179 - 185
1 Mar 2017
Wu JH Thoreson AR Gingery A An KN Moran SL Amadio PC Zhao C

Objectives

The present study describes a novel technique for revitalising allogenic intrasynovial tendons by combining cell-based therapy and mechanical stimulation in an ex vivo canine model.

Methods

Specifically, canine flexor digitorum profundus tendons were used for this study and were divided into the following groups: (1) untreated, unprocessed normal tendon; (2) decellularised tendon; (3) bone marrow stromal cell (BMSC)-seeded tendon; and (4) BMSC-seeded and cyclically stretched tendon. Lateral slits were introduced on the tendon to facilitate cell seeding. Tendons from all four study groups were distracted by a servohydraulic testing machine. Tensile force and displacement data were continuously recorded at a sample rate of 20 Hz until 200 Newton of force was reached. Before testing, the cross-sectional dimensions of each tendon were measured with a digital caliper. Young’s modulus was calculated from the slope of the linear region of the stress-strain curve. The BMSCs were labeled for histological and cell viability evaluation on the decellularized tendon scaffold under a confocal microscope. Gene expression levels of selected extracellular matrix tendon growth factor genes were measured. Results were reported as mean ± SD and data was analyzed with one-way ANOVAs followed by Tukey’s post hoc multiple-comparison test.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1171 - 1175
1 Aug 2010
Hajipour L Gulihar A Dias J

We carried out lacerations of 50%, followed by trimming, in ten turkey flexor tendons in vitro and measured the coefficient of friction at the tendon-pulley interface with loads of 200 g and 400 g and in 10°, 30°, 50° and 70° of flexion. Laceration increased the coefficient of friction from 0.12 for the intact tendon to 0.3 at both the test loads. Trimming the laceration reduced the coefficient of friction to 0.2. An exponential increase in the gliding resistance was found at 50° and 70° of flexion (p = 0.02 and p = 0.003, respectively) following trimming compared to that of the intact tendon.

We concluded that trimming partially lacerated flexor tendons will reduce the gliding resistance at the tendon-pulley interface, but will lead to fragmentation and triggering of the tendon at higher degrees of flexion and loading. We recommend that higher degrees of flexion be avoided during early post-operative rehabilitation following trimming of a flexor tendon.