Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 63 - 63
4 Apr 2023
Rashid M Cunningham L Walton M Monga P Bale S Trail I
Full Access

The purpose of this study is to report the clinical and radiological outcomes of patients undergoing primary or revision reverse total shoulder arthroplasty using custom 3D printed components to manage severe glenoid bone loss with a minimum of 2-year follow-up. After ethical approval (reference: 17/YH/0318), patients were identified and invited to participate in this observational study. Inclusion criteria included: 1) severe glenoid bone loss necessitating the need for custom implants; 2) patients with definitive glenoid and humeral components implanted more than 2 years prior; 3) ability to comply with patient reported outcome questionnaires. After seeking consent, included patients underwent clinical assessment utilising the Oxford Shoulder Score (OSS), Constant-Murley score, American Shoulder and Elbow Society Score (ASES), and quick Disabilities of the Arm, Shoulder, and Hand Score (quickDASH). Radiographic assessment included AP and axial projections. Patients were invited to attend a CT scan to confirm osseointegration. Statistical analysis utilised included descriptive statistics (mean and standard deviation) and paired t test for parametric data. 3 patients had revision surgery prior to the 2-year follow-up. Of these, 2/3 retained their custom glenoid components. 4 patients declined to participate. 5 patients were deceased at the time of commencement of the study. 21 patients were included in this analysis. The mean follow-up was 36.1 months from surgery (range 22–60.2 months). OSS improved from a mean 16 (SD 9.1) to 36 (SD 11.5) (p < 0.001). Constant-Murley score improved from mean 9 (SD 9.2) to 50 (SD 16.4) (p < 0.001). QuickDASH improved from mean 67 (SD 24) to 26 (SD 27.2) (p = 0.004). ASES improved from mean 28 (SD 24.8) to 70 (SD 23.9) (p = 0.007). Radiographic evaluation demonstrated good osseointegration in all 21 included patients. The utility of custom 3D-printed components for managing severe glenoid bone loss in primary and revision reverse total shoulder arthroplasty yields significant clinical improvements in this complex patient cohort


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 81 - 81
14 Nov 2024
Ahmed NA Narendran K Ahmed NA
Full Access

Introduction. Anterior shoulder instability results in labral and osseous glenoid injuries. With a large osseous defect, there is a risk of recurrent dislocation of the joint, and therefore the patient must undergo surgical correction. An MRI evaluation of the patient helps to assess the soft tissue injury. Currently, the volumetric three-dimensional (3D) reconstructed CT image is the standard for measuring glenoid bone loss and the glenoid index. However, it has the disadvantage of exposing the patient to radiation and additional expenses. This study aims to compare the values of the glenoid index using MRI and CT. Method. The present study was a two-year cross-sectional study of patients with shoulder pain, trauma, and dislocation in a tertiary hospital in Karnataka. The sagittal proton density (PD) section of the glenoid and enface 3D reconstructed images of the scapula were used to calculate glenoid bone loss and the glenoid index. The baseline data were analyzed using descriptive statistics, and the Chi-square test was used to test the association of various complications with selected variables of interest. Result. The glenoid index calculated in the current study using 3D volumetric CT images and MR sagittal PD images was 0.95±0.01 and 0.95±0.01, respectively. The CT and MRI glenoid bone loss was 5.41±0.65% and 5.38±0.65%, respectively. When compared, the glenoid index and bone loss calculated by MRI and CT revealed a high correlation and significance with a p-value of <0.001. Conclusions. The study concluded that MRI is a reliable method for glenoid measurement. The sagittal PD sequence combined with an enface glenoid makes it possible to identify osseous defects linked to glenohumeral joint damage and dislocation. The values derived from 3D CT are identical to the glenoid index and bone loss determined using the sagittal PD sequence in MRI


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 12 - 12
1 Dec 2022
Maggini E Bertoni G Guizzi A Vittone G Manni F Saccomanno M Milano G
Full Access

Glenoid and humeral head bone defects have long been recognized as major determinants in recurrent shoulder instability as well as main predictors of outcomes after surgical stabilization. However, a universally accepted method to quantify them is not available yet. The purpose of the present study is to describe a new CT method to quantify bipolar bone defects volume on a virtually generated 3D model and to evaluate its reproducibility. A cross-sectional observational study has been conducted. Forty CT scans of both shoulders were randomly selected from a series of exams previously acquired on patients affected by anterior shoulder instability. Inclusion criterion was unilateral anterior shoulder instability with at least one episode of dislocation. Exclusion criteria were: bilateral shoulder instability; posterior or multidirectional instability, previous fractures and/or surgery to both shoulders; congenital or acquired inflammatory, neurological, or degenerative diseases. For all patients, CT exams of both shoulders were acquired at the same time following a standardized imaging protocol. The CT data sets were analysed on a standard desktop PC using the software 3D Slicer. Computer-based reconstruction of the Hill-Sachs and glenoid bone defect were performed through Boolean subtraction of the affected side from the contralateral one, resulting in a virtually generated bone fragment accurately fitting the defect. The volume of the bone fragments was then calculated. All measurements were conducted by two fellowship-trained orthopaedic shoulder surgeons. Each measurement was performed twice by one observer to assess intra-observer reliability. Inter and intra-observer reliability were calculated. Intraclass Correlation Coefficients (ICC) were calculated using a two-way random effect model and evaluation of absolute agreement. Confidence intervals (CI) were calculated at 95% confidence level for reliability coefficients. Reliability values range from 0 (no agreement) to 1 (maximum agreement). The study included 34 males and 6 females. Mean age (+ SD) of patients was 36.7 + 10.10 years (range: 25 – 73 years). A bipolar bone defect was observed in all cases. Reliability of humeral head bone fragment measurements showed excellent intra-observer agreement (ICC: 0.92, CI 95%: 0.85 – 0.96) and very good interobserver agreement (ICC: 0.89, CI 95%: 0.80 – 0.94). Similarly, glenoid bone loss measurement resulted in excellent intra-observer reliability (ICC: 0.92, CI 95%: 0.85 – 0.96) and very good inter-observer agreement (ICC: 0.84, CI 95%:0.72 – 0.91). In conclusion, matching affected and intact contralateral humeral head and glenoid by reconstruction on a computer-based virtual model allows identification of bipolar bone defects and enables quantitative determination of bone loss


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 72 - 72
1 Dec 2021
Komperla S Giles W Flatt E Gandhi MJ Eyre-Brook AE Jones V Papanna M Eves T Thyagarajan D
Full Access

Abstract. Shoulder replacements have evolved and current 4th generation implants allow intraoperative flexibility to perform anatomic, reverse, trauma, and revision shoulder arthroplasty. Despite high success rates with shoulder arthroplasty, complication rates high as 10–15% have been reported and progressive glenoid loosening remains a concern. Objectives. To report medium term outcomes following 4th generation VAIOS® shoulder replacement. Methods. We retrospectively analysed prospectively collected data following VAIOS® shoulder arthroplasty performed by the senior author between 2014–2020. This included anatomical (TSR), reverse(rTSR), revision and trauma shoulder replacements. The primary outcome was implant survival (Kaplan-Meier analysis). Secondary outcomes were Oxford Shoulder Scores (OSS), radiological outcomes and complications. Results. 172 patients met our inclusion criteria with 114 rTSR, 38 anatomical TSR, and 20 hemiarthroplasty. Reverse TSR- 55 primary, 31 revision, 28 for trauma. Primary rTSR- 0 revisions, average 3.35-year follow-up. Revision rTSR-1 revision (4.17%), average 3.52-year follow-up. Trauma rTSR- 1 revision (3.57%), average 4.56-year follow-up OSS: Average OSS improved from 15.39 to 33.8 (Primary rTSR) and from 15.11 to 29.1 (Revision rTSR). Trauma rTSR-Average post-operative OSS was 31.4 Anatomical TSR38 patients underwent primary anatomical TSR, 8 were revisions following hemiarthroplasty. In 16/38 patients, glenoid bone loss was addressed by bone grafting before implantation of the metal back glenoid component. Mean age at time of surgery was 68.3 years (53 – 81 years). Mean follow-up was 34 months (12 – 62 months). The average Oxford shoulder score improved from 14 (7–30) to 30 (9–48). There were 3 revisions (7.8%); two following subscapularis failure requiring revision conversion to reverse shoulder replacement and one for glenoid graft failure. Conclusions. The medium-term results of the VAIOS® system suggest much lower revision rates across multiple configurations of the system than previously reported, as well as a low incidence of scapular notching. This system allows conversion to rTSR during primary and revision surgery


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 18 - 18
1 Nov 2021
Troiano E Facchini A Meglio MD Peri G Aiuto P Mondanelli N Giannotti S
Full Access

Introduction and Objective. In recent years, along with the extending longevity of patients and the increase in their functional demands, the number of annually performed RSA and the incidence of complications are also increasing. When a complication occurs, the patient often needs multiple surgeries to restore the function of the upper limb. Revision implants are directly responsible for the critical reduction of the bone stock, especially in the shoulder. The purpose of this paper is to report the use of allograft bone to restore the bone stock of the glenoid in the treatment of an aseptic glenoid component loosening after a reverse shoulder arthroplasty (RSA). Materials and Methods. An 86-years-old man came to our attention for aseptic glenoid component loosening after RSA. Plain radiographs showed a complete dislocation of the glenoid component with 2 broken screws in the neck of glenoid. CT scans confirmed the severe reduction of the glenoid bone stock and critical bone resorption and were used for the preoperative planning. To our opinion, given the critical bone defect, the only viable option was revision surgery with restoration of bone stock. We planned to use a bone graft harvested from distal bone bank femur as component augmentation. During the revision procedure the baseplate with a long central peg was implanted “on table” on the allograft and an appropriate osteotomy was made to customize the allograft on the glenoid defect according to the CT-based preoperative planning. The Bio-component was implanted with stable screws fixation on residual scapula. We decided not to replace the humeral component since it was stable and showed no signs of mobilization. Results. The new bio-implant was stable, and the patient gained a complete functional recovery of the shoulder. The scheduled radiological assessments up to 12 months showed no signs of bone resorption or mobilization of the glenoid component. Conclusions. The use of bone allograft in revision surgery after a RSA is a versatile and effective technique to treat severe glenoid bone loss and to improve the global stability of the implant. Furthermore, it represents a viable alternative to autologous graft since it requires shorter operative times and reduces graft site complications. There are very few data available regarding the use of allografts and, although the first studies are encouraging, further investigation is needed to determine the biological capabilities of the transplant and its validity in complex revisions after RSA


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 98 - 98
1 Dec 2020
Çağlar C
Full Access

The laterjet procedure is an important option in both primary and revision surgeries, especially in anterior shoulder instabilities that progress with glenoid bone loss. 12 patients who had a history of unsuccessful arthroscopic bankart repair and who underwent laterjet procedure in Ankara Atatürk Research and Training Hospital between 2013 and 2017 were included in the study and the patients were evaluated retrospectively. The mean age of the patients was calculated as 27.7 (range 21 to 38 years). Rowe and Walch-Duplay scores and operated shoulder (OS)-healthy shoulder (HS) range of motion (ROM) measurements were used to evaluate patients clinically and functionally. The mean follow-up time of the patients was calculated as 5.5±1.8 years. Firstly, no dislocation history was recorded in any patient afer the laterjet procedure. The mean Rowe score was calculated as 82.5 (range 60–100). Accordingly, 8 patients had excellent result, 3 patients had good result and 1 patient had fair result. The mean Walch-Duplay score was 81.4 (range 55–100). It was determined as excellent result in 6 patients, good result in 4 patients and fair result in 2 patients. Another data, joint ROM of the OS-HS of patients are shown in the table. There was some limitation in OS compared to the HS. p<0.05 value was accepted as statistically significant. While there was a statistically significant difference in external rotation (OS:35.2º, HS:56.4º)(p=0.003), internal rotation (OS:65.7º, HS:68.1º)(p=0.008) and flexion (OS:171.2º, HS:175.9º)(p=0.012) degrees but there was no statistically significant difference in abduction degrees (OS:164.3º, HS:170.4º) (p=0.089). In radiological evaluation, partial graft resorption was detected in 1 patient, but it was asymptomatic. The osteoarthritis which is one of the complications of laterjet procedure, was not detected radiologically. There are some limitations of the study. Firstly, it is a retrospective study. Secondly, the demographic features of the patients such as age, gender, profession and dominant hand are excluded. Thirdly, the mean follow-up time is not too long. Finally, some of the scales filled in are based on the patient's declaration, which may not yield sufficient objective results. In conclusion, the laterjet procedure is a suitable and reliable technique even for revision surgery in the treatment of anterior shoulder instability. It gives positive results in terms of shoulder stability and function. The major disadvantage was found to be the limitation of external rotation. Longer follow-up is needed for another outcomes and late complications, such as osteoarthritis. For any figures or tables, please contact the authors directly