Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 46 - 46
7 Nov 2023
Moosa S
Full Access

Medical Genetics is a transversal discipline with the potential to impact on every specialty and subspecialty in medicine and the allied health sciences. The completion of the human genome project resulted in technical advancements in genomics, genomic testing and our understanding of genetic disorders in general. These advancements have greatly enhanced our understanding of the role of genetics in Orthopaedic practice, with respect to both monogenic and complex disorders. Tygerberg Hospital is currently the only state hospital in South Africa to support genetic testing in the form of gene panels as part of routine care. This is complemented by more comprehensive research testing in the form of exome and genome sequencing as part of the Undiagnosed Disease Programme. We audit the genetic and genomic testing done on patients referred from the Orthopaedic clinic over a period of 3 years (2020–2022) and review diagnostic rates and interesting results. The largest group of patients referred (n=50) had a clinical diagnosis of osteogenesis imperfecta (OI). A 100% diagnostic yield was achieved for these patients with the identification of recurring variants (FKBP10, COL1A2). Further families (n=20) with much rarer conditions are presented with important implications on the orthopaedic and medical management, prognosis, and genetic counselling for the families. We highlight the impact of genomic testing in the Orthopaedic clinic. Management changes and precision orthopaedic intervention were only possible due to a genetic diagnosis. We motivate for increased access to testing, especially for younger patients presenting with complex orthopaedic phenotypes


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 64 - 64
1 May 2019
Rodriguez J
Full Access

Modifiable factors contributing to stiffness include alignment, implant size, implant position and rotation, and soft tissue tightness or laxity. Less modifiable factors include genetics as in predisposition to inflammation and fibrosis, aberrations in perception and experience of emotional pain, and preoperative range of motion. We reviewed 559 knees undergoing revision between 2007 and 2014, selecting out patients with a diagnosis of stiffness and greater than one-year follow-up. Stiffness was defined as greater than 15 degrees of flexion contracture or less than 75 degrees of flexion or less than 90 degrees of active motion and a chief complaint of limited motion and pain. Radiographic analysis used a set of matched controls with greater than 90 degrees and full extension prior to surgery and were further matched by age, gender, BMI. Flexion contracture changed from an average of 9.7 to an average of 2.3 degrees, flexion changed from an average of 81 to an average of 94 degrees, active motion changed from an average of 72 to an average of 92 degrees, pain scores improved from 44 to 72 points, and Knee Society function scores improved from an average of 49 to an average of 70 points. There were four failures for stiffness, two knees underwent additional manipulation, gaining an average of 10 degrees; and two knees were revised. Radiographic analysis demonstrated stiffness to be strongly correlated to anterior condylar offset ratio and to patellar displacement by multivariant regression analysis, suggesting that overstuffing the patellofemoral joint by anteriorization of the femoral component is associated with stiffness. Using modern revision techniques, revision for stiffness creates reliable improvements in pain, Knee Society clinical and functional scores, and motion


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 90 - 90
1 Dec 2017
Kolenda C Josse J Sierra R Renzoni A Laurent F
Full Access

Aim. Toxin-antitoxin (TA) systems are small genetics elements found in the majority of bacteria which encode a toxin causing bacterial growth arrest and an antitoxin counteracting the toxic effect. In Salmonella and E. coli, TA systems were shown to be involved in the formation of persisters. Persisters are a bacterial subpopulation with low growth rate and high tolerance to antibiotics. They could be responsible for antibiotic treatment failure in chronic infections and relapses, notably in bone and joint infections (BJI) caused by Staphylococcus aureus. Currently, two type II TA system families were described in S. aureus, mazEF and axe/txe, but their physiological roles are not well described. In this work, we studied the importance of mazEF in the intracellular survival of S. aureus inside osteoblasts, one of the mechanisms considered in the chronicity of S. aureus BJI. Methods. Using an ex vivo model of intracellular infection of human osteoblast-like cells (MG-63), two strains of S. aureus HG003 wild type and its isogenic mutant HG003 ΔmazEF were compared in terms of : i) internalization and intracellular survival by lysostaphin protective assay and ii) cytotoxicity by quantifying LDH in the culture supernatant, 24h and 48h after infection. Results. The comparison of the two strains revealed that HG003 ΔmazEF had a lower capacity to be internalized by osteoblasts compared to the wild type (p=0.02). However, intracellular survival was greater for HG003 ΔmazEF compared to the wild type 24h and 48h post-infection (p=0.02 and 0.001 respectively). Concerning the bacteria-induced cell death, HG003 ΔmazEF appeared to be less cytotoxic than the wild type strain at 24h post infection (p=0.007) whereas no more differences could be observed after 48h. This delayed cytotoxicity with HG003 ΔmazEF was also observed after incubation of culture supernatants with osteoblasts during 8 hours, suggesting that the differences observed could be caused by a secreted molecule. Conclusions. Our results suggest that the mazEF system could be involved in S. aureus BJI physiopathology regulating cytotoxicity and persistence in osteoblasts. Our prospect is to identify the target of the mazF toxin which could be a therapeutic target


Bone & Joint Open
Vol. 1, Issue 9 | Pages 585 - 593
24 Sep 2020
Caterson J Williams MA McCarthy C Athanasou N Temple HT Cosker T Gibbons M

Aims

The aticularis genu (AG) is the least substantial and deepest muscle of the anterior compartment of the thigh and of uncertain significance. The aim of the study was to describe the anatomy of AG in cadaveric specimens, to characterize the relevance of AG in pathological distal femur specimens, and to correlate the anatomy and pathology with preoperative magnetic resonance imaging (MRI) of AG.

Methods

In 24 cadaveric specimens, AG was identified, photographed, measured, and dissected including neurovascular supply. In all, 35 resected distal femur specimens were examined. AG was photographed and measured and its utility as a surgical margin examined. Preoperative MRIs of these cases were retrospectively analyzed and assessed and its utility assessed as an anterior soft tissue margin in surgery. In all cadaveric specimens, AG was identified as a substantial structure, deep and separate to vastus itermedius (VI) and separated by a clear fascial plane with a discrete neurovascular supply. Mean length of AG was 16.1 cm ( ± 1.6 cm) origin anterior aspect distal third femur and insertion into suprapatellar bursa. In 32 of 35 pathological specimens, AG was identified (mean length 12.8 cm ( ± 0.6 cm)). Where AG was used as anterior cover in pathological specimens all surgical margins were clear of disease. Of these cases, preoperative MRI identified AG in 34 of 35 cases (mean length 8.8 cm ( ± 0.4 cm)).


Bone & Joint Open
Vol. 1, Issue 8 | Pages 474 - 480
10 Aug 2020
Price A Shearman AD Hamilton TW Alvand A Kendrick B

Introduction

The aim of this study is to report the 30 day COVID-19 related morbidity and mortality of patients assessed as SARS-CoV-2 negative who underwent emergency or urgent orthopaedic surgery in the NHS during the peak of the COVID-19 pandemic.

Method

A retrospective, single centre, observational cohort study of all patients undergoing surgery between 17 March 2020 and 3May 2020 was performed. Outcomes were stratified by British Orthopaedic Association COVID-19 Patient Risk Assessment Tool. Patients who were SARS-CoV-2 positive at the time of surgery were excluded.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 414 - 419
1 Mar 2014
Kodumuri P Ollivere B Holley J Moran CG

We evaluated the top 13 journals in trauma and orthopaedics by impact factor and looked at the longer-term effect regarding citations of their papers.

All 4951 papers published in these journals during 2007 and 2008 were reviewed and categorised by their type, subspecialty and super-specialty. All citations indexed through Google Scholar were reviewed to establish the rate of citation per paper at two, four and five years post-publication. The top five journals published a total of 1986 papers. Only three (0.15%) were on operative orthopaedic surgery and none were on trauma. Most (n = 1084, 54.5%) were about experimental basic science. Surgical papers had a lower rate of citation (2.18) at two years than basic science or clinical medical papers (4.68). However, by four years the rates were similar (26.57 for surgery, 30.35 for basic science/medical), which suggests that there is a considerable time lag before clinical surgical research has an impact.

We conclude that high impact journals do not address clinical research in surgery and when they do, there is a delay before such papers are cited. We suggest that a rate of citation at five years post-publication might be a more appropriate indicator of importance for papers in our specialty.

Cite this article: Bone Joint J 2014;96-B:414–19.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 10 - 15
1 Jan 2012
Ollivere B Wimhurst JA M. Clark I Donell ST

The most frequent cause of failure after total hip replacement in all reported arthroplasty registries is peri-prosthetic osteolysis. Osteolysis is an active biological process initiated in response to wear debris. The eventual response to this process is the activation of macrophages and loss of bone.

Activation of macrophages initiates a complex biological cascade resulting in the final common pathway of an increase in osteolytic activity. The biological initiators, mechanisms for and regulation of this process are beginning to be understood. This article explores current concepts in the causes of, and underlying biological mechanism resulting in peri-prosthetic osteolysis, reviewing the current basic science and clinical literature surrounding the topic.