Bone regeneration is pivotal for the healing of fractures. In case this process is disturbed a non-union can occur. This can be induced by environmental factors such as smoking, overloading etc. Co-morbidities such as diabetes, osteoporosis etc. may be more intrinsic factors besides other disturbances in the process. Those pathways negatively influence the bone regeneration process. Several intrinsic signal transduction pathways (WNT, BMP etc.) can be affected. Furthermore, on the transcriptional level, important mRNA expression can be obstructed by deregulated miRNA levels. For instance, several miRNAs have been shown to be upregulated during osteoporotic fractures. They are detrimental for osteogenesis as they block bone formation and accelerate bone resorption. Modulating those miRNAs may revert the physiological homeostasis. Indeed, physiological fracture healing has a typical miRNA signature. Besides using molecular pathways for possible treatment of non-union fractures, providing osteogenic cells is another solution. In 5 clinical cases with non-union fractures with defects larger than 10 cm, successful administration of a 3D printed PCL-TCP scaffold with autologous bone marrow aspirate concentrate and a modulator of the pathogenetic pathway has been achieved. All patients recovered well and showed a complete union of their fractures within one year after start of the regenerative treatment. Thus, non-union fractures are a diverse entity. Nevertheless, there seem to be common pathogenetic disturbances. Those can be counteracted at several levels from molecular to cell. Compositions of those may be the best option for
Cartilage lesions often undergo irreversible progression due to low self-repair capability of this tissue. Tissue engineered approaches based in extrusion bioprinting of constructs loaded with stem cell spheroids may offer valuable alternatives for the treatment of cartilage lesions. Human mesenchymal stromal cell (hMSC) spheroids can be chondrogenically differentiated faster and more efficiently than single cells. This approach allows obtaining larger tissues in a rapid, controlled and reproducible way. However, it is challenging to control tissue architecture, construct stability, and cell viability during maturation. In this study we aimed at the development of a reproducible bioprinting process followed by post-bioprinting chondrogenic differentiation procedure using large quantities of hMSC spheroids encapsulated in a xanthan gum-alginate hydrogel. Multi-layered constructs were bioprinted, ionically crosslinked, and chondrogenically differentiated for 28 days. The expression of glycosaminoglycan, collagen II and IV were observed. After 56 days in culture, the bioprinted constructs were still stable and show satisfactory cell metabolic activity with profuse extracellular matrix production. These results showed a promising procedure to obtain 3D cartilage-like constructs that could be potential use as stable chondral tissue implants for
Introduction. Osteoarthritis (OA) often results from joint misloading, which affects chondrocyte calcium signaling through mechano-sensitive receptors such as Piezo1, -2, and TRPV4. Activation of Piezo1, especially under inflammatory conditions, can trigger premature chondrocyte apoptosis. Intra-articular glucocorticoid therapy, while beneficial against inflammation and pain in osteoarthritis, may induce oxidative stress and chondrotoxicity at higher doses. This study aims to assess the effects of glucocorticoids, particularly triamcinolone, on chondrocyte elasticity and mechanosignaling. Method. Chondrocytes isolated from articular condyles obtained from patients undergoing knee replacement surgery (n= 5) were cultured for 7 days in triamcinolone acetonide (TA) at different concentrations (0.2µM – 2mM). Cytoskeletal changes were assessed by F-actin labeling. Cell elasticity was measured using atomic force microscopy (AFM). Labeling cells (n=6 patients) with the calcium-sensitive dye (Fluo-4) enabled monitoring changes in intracellular calcium fluorescence intensity during guided single-cell mechanical indentation (500 nN) by AFM. Result. Cell exposure to 2 mM TA led to cell death and crystallization of TA in the cell culture media. However, the concentration of TA for intra-articular application is 46 times higher at 92.1 mM (40 mg/ml). The maximal pharmacological effect on viable cells was observed at 0.2 mM. AFM results showed a significant decrease of elasticity (p<0.001), alongside significantly higher calcium intensities both prior to and during mechanical stimulation in the TA-treated samples (p<0.05). Conclusion. Administration of TA significantly impacts the mechanical properties of chondrocytes, reducing cellular elasticity while simultaneously enhancing calcium-dependent mechanosensitivity. This data suggests a correlation between glucocorticoid-induced changes in cell elasticity and cell mechanosensitivity. Finding ways to minimize the effect of glucocorticoids on cell mechanosensitivity could help to make
Ligaments and tendons are vital musculoskeletal soft tissues, which are commonly injured due to overuse and trauma. Their distinct functions are well known however their unique structure and biochemical composition and how they change with disease is poorly described. The most commonly injured ligament in the dog and man is the cranial cruciate (CCL) and anterior cruciate ligament (ACL) respectively. Therefore, the structure, function and pathophysiology of disease of this ligament has been most commonly studied in both species. Canine cranial cruciate ligament rupture (CCLR) most commonly occurs following gradual ligament degeneration or disease (CCLD) followed by a non-contact injury or a minor trauma. Several studies have described marked degenerative histological changes in ligament structure prior to and following rupture which consist of loss of the collagen fascicular structure, areas of poor collagen fibril staining, a marked increase in “chondroid” type cells and mineralisation. The ECM protein profile is also altered with increased sulphated glycosaminoglycans content, increased immature collagen cross-links as well as enzymes involved in collagen remodelling. In man, similar findings have been described in the ACL with age and in osteoarthritis (OA). Previously it had been thought that ligament degeneration occurred following OA but these more recent studies suggest that ligament degeneration can lead to joint destabilisation and OA. Being able to determine early degenerative ligament changes in spontaneous clinical cohorts and the mechanisms which cause them are ideal starting points to determine targets for
Introduction. Anteromedial osteoarthritis of the knee (anteromedial gonarthrosis-AMG) is a common form of knee arthritis. In a clinical setting, knee arthritis has always been assessed by plain radiography in conjunction with pain and function assessments. Whilst this is useful for surgical decision making in bone on bone arthritis, plain radiography gives no insight to the earlier stages of disease. In a recent study 82% of patients with painful arthritis had only partial thickness joint space loss on plain radiography. These patients are managed with various surgical treatments; injection, arthroscopy, osteotomy and arthroplasty with varying results. We believe these varying results are in part due to these patients being at different stages of disease, which will respond differently to different treatments. However radiography cannot delineate these stages. We describe the Magnetic Resonance Imaging (MRI) findings of this partial thickness AMG as a way of understanding these earlier stages of the disease. Method. 46 subjects with symptomatic partial thickness AMG underwent MRI assessment with dedicated 3 Tesla sequences. All joint compartments were scored for both partial and full thickness cartilage lesions, osteophytes and bone marrow lesions (BML). Both menisci were assessed for extrusion and tear. Anterior cruciate ligament (ACL) integrity was also assessed. Osteophytes were graded on a four point scale in the intercondylar notch and the lateral margins of the joint compartments. Scoring was performed by a consultant radiologist and clinical research fellow using a validated MRI atlas with consensus reached for disagreements. The results were tabulated and relationships of the interval data assessed with linear by linear Chi2 test and Pearson's Correlation. Results. All cases had medial femoral cartilage loss; 22% partial and 78% full thickness. 79% showed medial tibial loss, however in no cases was there medial tibial loss without femoral loss. 10 cases had lateral compartment partial thickness cartilage loss. Again, there was no tibial loss without femoral loss present. Increasing size of intercondylar notch osteophyte is associated with increasing ACL damage (p=0.001). Independent to this, increasing ACL damage is associated with lateral femoral condyle cartilage loss (p=0.002). Throughout the knee the incidence of BMLs increased with increasing cartilage loss (p=0.025). Only 13% of medial menisci were normal. As meniscal damage increases, so does the incidence of BMLs in the same compartment (p=0.03). Discussion. We describe the MRI findings of early AMG with partial thickness joint space loss. In all cases there was medial femoral loss, either with or without tibial loss. We believe the disease begins on the medial femoral condyle and progresses through the joint in stages. Later stages are associated with damage to the other structures in the knee, such as the meniscus and the ACL. Damage to the ACL is associated with increasing osteophytosis. This description is the first step in describing the stages of early AMG. Description of these stages is important since we believe the outcome of surgical intervention may be dependant on these and they may guide
Osteoporosis is an international health and financial burden of ever increasing proportions. Current treatments limit the rate of bone resorption and reduce fracture risk, however they are often associated with significant and debilitating side effects. The most commonly used therapies also do not stimulate osteoblast activity. Much current research focus is aimed at the metabolic and epigenetic pathways involved in osteoporosis. MicroRNAs have been shown to play an important role in bone homeostasis and pathophysiological conditions of the musculoskeletal system. Upregulation of specific microRNAs has been identified in-vivo in osteoporotic patients. It is hypothesized that modulation of specific mircoRNA expression may have a key role in
Osteoporosis is an international health and financial burden of ever increasing proportions. Current treatments limit the rate of bone resorption and reduce fracture risk, however they are often associated with significant and debilitating side effects. The most commonly used therapies also do not stimulate osteoblast activity . 1,2,3. Much current research focus is aimed at the metabolic and epigenetic pathways involved in osteoporosis. MicroRNAs have been shown to play an important role in bone homeostasis and pathophysiological conditions of the musculoskeletal system. Up-regulation of specific microRNAs has been identified in-vivo in osteoporotic patients . 4,5. It is hypothesized that modulation of specific microRNA expression may have a key role in
Post-traumatic arthritis is a frequent consequence of articular fracture. The mechanisms leading to its development after such injuries have not been clearly delineated. A potential contributing factor is decreased viability of the articular chondrocytes. The object of this study was to characterise the regional variation in the viability of chondrocytes following joint trauma. A total of 29 osteochondral fragments from traumatic injuries to joints that could not be used in articular reconstruction were analysed for cell viability using the fluorescence live/dead assay and for apoptosis employing the TUNEL assay, and compared with cadaver control fragments. Chondrocyte death and apoptosis were significantly greater along the edge of the fracture and in the superficial zone of the osteochondral fragments. The middle and deep zones demonstrated significantly higher viability of the chondrocytes. These findings indicate the presence of both necrotic and apoptotic chondrocytes after joint injury and may provide further insight into the role of chondrocyte death in post-traumatic arthritis.