Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 15 - 15
14 Nov 2024
Heumann M Feng C Benneker L Spruit M Mazel C Buschbaum J Gueorguiev B Ernst M
Full Access

Introduction. In daily clinical practice, progression of spinal fusion is typically monitored during clinical follow-up using conventional radiography and Computed Tomography scans. However, recent research has demonstrated the potential of implant load monitoring to assess posterolateral spinal fusion in an in-vivo sheep model. The question arises to whether such a strain sensing system could be used to monitor bone fusion following lumbar interbody fusion surgery, where the intervertebral space is supported by a cage. Therefore, the aim of this study was to test human cadaveric lumbar spines in two states: after a transforaminal lumbar interbody fusion (TLIF) procedure combined with a pedicle-screw-rod-construct (PSR) and subsequently after simulating bone fusion. The study hypothesized that the load on the posterior instrumentation decreases as the segment stiffens due to simulated fusion. Method. A TLIF procedure with PSR was performed on eight human cadaveric spines at level L4-L5. Strain sensors were attached bilaterally to the rods to derive implant load changes during unconstrained flexion-extension (FE), lateral bending (LB) and axial rotation (AR) loads up to ±7.5Nm. The specimens were retested after simulating bone fusion between vertebrae L4-L5. In addition, the range of motion (ROM) was measured during each loading mode. Result. The ROM decreased in the simulated bone fusion state in all loading directions (p≤0.002). In both states, the measured strain on the posterior instrumentation was highest during LB motion. Furthermore, the sensors detected a significant decrease in the load induced rod strain (p≤0.002) between TLIF+PSR and simulated bone fusion state in LB. Conclusion. Implant load measured via rod strain sensors can be used to monitor the progression of fusion after a TLIF procedure when measured during LB of the lumbar spine. However, further research is needed to investigate the influence of daily loading scenarios expected in-vivo on the overall change in implant load


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 33 - 33
1 Dec 2021
Kakadiya G Chaudhary K
Full Access

Abstract. Objectives. to evaluate the efficacy and safety of topically applied tranexamic acid (TXA) in thoracolumbar spinal tuberculosis surgery, posterior approach. Methods. Thoracolumbar spine tuberculosis patients who requiring debridement, pedicle screw fixation and fusion surgery were divided into two groups. In the TXA group (n=50), the wound surface was soaked with TXA (1 g in 100 mL saline solution) for 3 minutes after exposure, after decompression, and before wound closure, and in the control group (n=116) using only saline. Intraoperative blood loss, drain volume 48 hours after surgery, amount of blood transfusion, transfusion rate, the haemoglobin, haematocrit after the surgery, the difference between them before and after the surgery, incision infection and the incidence of deep vein thrombosis between the two groups. Results. EBL for the control group was 783.33±332.71 mL and for intervention group 410.57±189.72 mL (p<0.001). The operative time for control group was 3.24±0.38 hours and for intervention group 2.99±0.79 hours (p<0.695). Hemovac drainage on days1 and 2 for control group was 167.10±53.83mL and 99.33±37.5 mL, respectively, and for intervention group 107.03±44.37mL and 53.38±21.99mL, respectively (p<0.001). The length of stay was significantly shorter in the intervention group (4.8±1.1 days) compared to control group (7.0±2.3 days). There was bo different in incision side infection and DVT. Conclusions. Topical TXA is a viable, cost-effective method of decreasing perioperative blood loss in major spine surgery with fewer overall complications than other methods. Further studies are required to find the ideal dosage and timing


Introduction and Objective. Posterior and transforaminal lumbar interbody fusion (PLIF, TLIF) represent the most popular techniques in performing an interbody fusion amongst spine surgeons. Pseudarthrosis, cage migration, subsidence or infection can occur, with subsequent failed surgery, persistent pain and patient’ bad quality of life. The goal of revision fusion surgery is to correct any previous technical errors avoiding surgical complications. The most safe and effective way is to choose a naive approach to the disc. Therefore, the anterior approach represents a suitable technique as a salvage operation. The aim of this study is to underline the technical advantages of the anterior retroperitoneal approach as a salvage procedure in failed PLIF/TLIF analyzing a series of 32 consecutive patients. Materials and Methods. We performed a retrospective analysis of patients’ data in patients who underwent ALIF as a salvage procedure after failed PLIF/TLIF between April 2014 to December 2019. We recorded all peri-operative data. In all patients the index level was exposed with a minimally invasive anterior retroperitoneal approach. Results. Thirty-two patients (average age: 46.4 years, median age 46.5, ranging from 21 to 74 years hold- 16 male and 16 female) underwent salvage ALIF procedure after failed PLIF/TLIF were included in the study. A minimally invasive anterior retroperitoneal approach to the lumbar spine was performed in all patients. In 6 cases (18.7%) (2 infection and 4 pseudarthrosis after stand-alone IF) only anterior revision surgery was performed. A posterior approach was necessary in 26 cases (81.3%). In most of cases (26/32, 81%) the posterior instrumentation was overpowered by the anterior cage without a previous revision. Three (9%) intraoperative minor complications after anterior approach were recorded: 1 dural tear, 1 ALIF cage subsidence and 1 small peritoneal tear. None vascular injuries occurred. Most of patients (90.6%) experienced an improvement of their clinical condition and at the last follow-up no mechanical complication occurred. Conclusions. According to our results, we can suggest that a favourable clinical outcome can firstly depend from technical reasons an then from radiological results. The removal of the mobilized cage, the accurate endplate and disc space preparation and the cage implant eliminate the primary source of pain reducing significantly the axial pain, helping to realise an optimal bony surface for fusion and enhancing primary stability. The powerful disc distraction given by the anterior approach allows inserting large and lordotic cages improving the optimal segmental lordosis restoration


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 114 - 114
1 Nov 2018
Murphy E Fenelon C Egan C Kearns S
Full Access

Osteochondral lesions (OCLs) of the talus are a challenging and increasingly recognized problem in chronic ankle pain. Many novel techniques exist to attempt to treat this challenging entity. Difficulties associated with treating OCLs include lesion location, size, chronicity and problems associated with potential graft harvest sites. Matrix associated stem cell transplantation (MAST) is one such treatment described for larger lesions >15mm. 2. or failed alternative therapies. This cohort study describes a 5 year review of the outcomes of talar lesions treated with MAST. A review of all patients treated with MAST by a single surgeon was conducted. Pre-operative radiographs, MRIs and FAOS outcome questionnaire scores were conducted. Intraoperative classification was conducted to correlate with imaging. Post-operative outcomes included FAOS scores, return to sport, revision surgery/failure of treatment and progression to arthritis/fusion surgery. 32 patients were identified in this cohort. There were 10 females, 22 males, with an average age of 35. 01. 73% had returned and continued playing active sport. 23 patients underwent MAST in the setting of a failed previous operative attempt, with just 9 having MAST as a first option. 9 patients out of 32 had a further procedure. Two patients had a further treatment directed at their OCL. Two patients had a fusion, 2 had a cheilectomy at > 4 years for impingement, one had a debridement of their anterolateral gutter, one had debridement for arthrofibrosis, one patient had a re alignment calcaneal osteotomy with debridement of their posterior tibial tendon. MAST has demonstrated positive results in lesions which prove challenging to treat, even in a “failed microfracture” cohort


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 6 - 6
1 Apr 2018
Geurts J Ramp D Schären S Netzer C
Full Access

Introduction. Augmentation of spinal fusion using bone grafts is largely mediated by the osteoinductive potential of mesenchymal stem cells (MSC) that reside in cancellous bone. Iliac crest (IC) is a common autograft, but its use presents an increased risk for donor-site pain, morbidity and infection. Degenerative facet joints (FJ) harvested during facetectomy might servce as alternative local grafts. In this study, we conducted an intra-individual comparison of the osteogenic potential of MSC from both sources. Methods. IC and degenerative FJ were harvested from 8 consecutive patients undergoing transforaminal lumbar interbody fusion surgery for spinal stenosis. MSC were isolated by collagenase digestion, selected by plastic adherence and minimally expanded for downstream assays. Clonogenic and osteogenic potential was evaluated by colony formation assays in control and osteogenic culture medium. Osteogenic properties, including alkaline phosphatase (ALP) induction, matrix mineralization and type I collagen mRNA and protein expression were characterized using quantitative histochemical staining and reverse transcription PCR. Spontaneous adipogenesis was analysed by adipocyte enumeration and gene expression analysis of adipogenic markers. Results. Average colony-forming efficiency in osteogenic medium was equal between IC (38±12%) and FJ (36±11%). Osteogenic potential at the clonal level was 55±26 and 68±17% for IC and FJ MSC, respectively. Clonogenic and osteogenic potential were significantly negatively associated with donor age. Osteogenic differentiation led to significant induction of ALP activity in IC (6-fold) and FJ (8-fold) MSC. Matrix mineralization quantified by Alizarin red staining was increased by osteogenic differentiation, yet similar between both MSC sources. Protein expression of type I collagen was enhanced during osteogenesis and significantly greater in IC MSC. Correspondingly, COL1A2 mRNA expression was higher in osteogenically differentiated MSC from IC. Adipocyte numbers showed significant differences between IC (63±60) and FJ (18±15) MSC under osteogenic conditions. Negative (GREM1) and positive (FABP4) adipogenic markers were not differentially expressed between sources. Conclusion. MSC from IC and degenerative FJ largely display similar clonogenic and osteogenic properties in vitro. Differences at the molecular level are not likely to impair the osteoinductive capacity of FJ MSC. Facetectomy samples are viable bone autografts for intervertebral spinal fusion


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 8 - 8
1 Oct 2016
Young P Greer A Tsimbouri P Meek R Gadegaard N Dalby M
Full Access

We have developed precision-engineered strontium eluting nanopatterned surfaces. Nanotopography has been shown to increase osteoblast differentiation, and strontium is an element similar to calcium, which has been proven to increase new bone formation and mineralization. This combination has great potential merit in fusion surgery and arthroplasty, as well as potential to reduce osteoporosis. However, osteoclast mediated osteolysis is responsible for the aseptic failure of implanted biomaterials, and there is a paucity of literature regarding osteoclast response to nanoscale surfaces. Furthermore, imbalance in osteoclast/osteoblast resorption is responsible for osteoporosis, a major healthcare burden. We aimed to assess the affect of strontium elution nanopatterned surfaces on osteoblast and osteoclast differentiation. We developed a novel human osteoblast/osteoclast co-culture system without extraneous supplementation to closely represent the in vivo environment. We assessed the surfaces using electron microscopy (SEM), protein expression using immunofluorescence and histochemical staining and gene expression using polymerase chain reaction (PCR). In complex co-culture significantly increased osteoblast differentiation and bone formation was noted on the strontium eluting, nanopatterned and nanopatterned strontium eluting surfaces, suggesting improved osteointegration. There was a reduction in macrophage attachment on these surfaces as well, suggesting specific anti-osteoclastogenic properties of this surface. Our results show that osteoblast and osteoclast differentiation can be controlled through use of nanopatterned and strontium eluting surface features, with significant bone formation seen on these uniquely designed surfaces