Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 62 - 62
4 Apr 2023
Rashid M Islam R Marsden S Trompeter A Teoh K
Full Access

A number of classification systems exist for posterior malleolus fractures of the ankle. The reliability of these classification systems remains unclear. The primary aim of this study was to evaluate the reliability of three commonly utilised fracture classification systems of the posterior malleolus. 60 patients across 2 hospitals sustaining an unstable ankle fracture with a posterior malleolus fragment were identified. All patients underwent radiographs and computed tomography of their injured ankle. 9 surgeons including pre-ST3 level, ST3-8 level, and consultant level applied the Haraguchi, Rammelt, and Mason & Molloy classifications to these patients, at two timepoints, at least 4 weeks apart. The order was randomised between assessments. Inter-rater reliability was assessed using Fleiss’ kappa and 95% confidence intervals (CI). Intra-rater reliability was assessed using Cohen's Kappa and standard error (SE). Inter-rater reliability (Fleiss’ Kappa) was calculated for the Haraguchi classification as 0.522 (95% CI 0.490 – 0.553), for the Rammelt classification as 0.626 (95% CI 0.600 – 0.652), and the Mason & Molloy classification as 0.541 (95% CI 0.514 – 0.569). Intra-rater reliability (Cohen's Kappa) was 0.764 (SE 0.034) for the Haraguchi, 0.763 (SE 0.031) for the Rammelt, 0.688 (SE 0.035) for the Mason & Molloy classification. This study reports the inter-rater and intra-rater reliability for three classification systems for posterior malleolus fractures. Based on definitions by Landis & Koch (1977), inter-rater reliability was rated as ‘moderate’ for the Haraguchi and Mason & Molloy classifications; and ‘substantial’ for the Rammelt classification. Similarly, the intra-rater reliability was rated as ‘substantial’ for all three classifications


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 100 - 100
1 Nov 2018
McAuley N McQuail P Nolan K Gibson D McKenna J
Full Access

Osteonecrosis is a potentially devastating condition with poorly defined pathogenesis that can affect several anatomical areas with or without a previous traumatic insult. Post traumatic osteonecrosis (PON) in the foot and ankle has been commonly described in the talus and navicular but rarely in the distal tibia. PON of the distal tibia is a rarely reported and infrequent complication of fracture dislocations of the ankle. Its scarcity can lead to misdiagnosis and inappropriate management due to a lack of clinical knowledge or suspicion with resultant severe functional compromise. We aim to highlight the clinical and radiological features of PON of the distal tibia and report the findings in a series of four patients following a fracture dislocation of the ankle. Three patients sustained a SER4 fracture dislocation and one patient sustained a PER4 fracture dislocation in keeping with standard patterns of injury seen in most trauma units. In each case, PON of the distal tibia presented with progressive anterolateral tibial plafond collapse and valgus deformity of the ankle. The radiological features previously reported in the literature are based on plain film x-ray, CT and MRI but no description of SPECT-CT findings. One of the patients in the series underwent SPECT-CT following clinical suspicion of PON and thus we describe the findings not previously reported. Our objective is to highlight this rare condition as a potential cause for ongoing pain following fracture dislocation of the ankle as well as advocating the use of SPECT/CT as a useful imaging modality to aid in the diagnosis


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 63 - 63
1 Nov 2018
Kose N Köse A Bayrak C Sevencan A Akyürekli A Koparak T Korkusuz F Dogan A
Full Access

Long-term survival and favourable outcome of implant use are determined by bone-implant osseointegration and absence of infection near the implants. As with most diseases, prevention is the preferred approach. Silver ion doped calcium phosphate based ceramic coating (Silveron®) for implant coating has been shown previously to be a potent antimicrobial agent as indicated by in vitro testing. The present study reports on clinical experience using silver ion doped calcium phosphate based ceramic coated external fixator pins as surgical treatment in the management of chronic osteomyelitis and open fractures. Ten patients had external fixators: six for open fractures of ankle, three for chronic osteomyelitis of the femur, one for tibia pseudoarthrosis. The electrospray method was used for coating the external fixator pins with silver ion doped calcium phosphate-based ceramics. A radiofrequency energy source was used to sinter the coated pins. Microbiological, roentgenographic, toxic and biochemical analyzes of patients were carried out. Wound debridement, and subsequent wound care resulted in control of the infection in three chronic osteomyelitis and in healing of seven fractures after follow-up ranging from three to six months. In total 67 pins were used in 10 patients but only one pin was positive microbiologically in one patient. Collectively, these data clearly illustrate that the toxic effects of silver were not observed at the doses used. Silver ion doped calcium phosphate based ceramic coating (Silveron®) can be used to prevent infection associated with the implant


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 317 - 317
1 Jul 2014
Mangnus L Meijer D Mellema J Veltman W Steller E Stufkens S Doornberg J
Full Access

Summary. Quantification of Three-Dimensional Computed Tomography (Q3DCT) is a reliable and reproducible technique to quantify and characterise ankle fractures with a posterior malleolar fragment (. www.traumaplatform.org. ). This technique could be useful to characterise posterior malleolar fragments associated with specific ankle fracture patterns. Introduction. Fixation of posterior malleolar fractures of the ankle is subject of ongoing debate1. Fracture fixation is recommended for fragments involving 25–30% of articular surface1. However, these measurements -and this recommendation- are based on plain lateral radiographs only. A reliable and reproducible method for measurements of fragment size and articular involvement of posterior malleolar fractures has not been described. The aim of this study is to assess the inter-observer reliability of Quantification using Three-Dimensional Computed Tomography (Q3DCT) –modelling. 2,3,4,5. for fragment size and articular involvement of posterior malleolar fractures. We hypothesize that Q3DCT-modelling for posterior malleolar fractures has good to excellent reliability. Patients & Methods. To evaluate inter-observer reliability of Q3DCT-modelling, we included a consecutive series of 43 patients with an ankle fracture involving the posterior malleolus and a complete radiographic documentation (radiographs and computed tomography) Fractures of the tibial plafond (pilon type fractures) were excluded. These 43 patients were divided in 3 different types (Type I, II or III) as described by Haraguchi6. Five patients of each type were randomly selected for an equal distribution of articular fragment sizes. 3D models were reconstructed by 1) creating a mask for every respective slice; 2) select the appropriate dots that separate fracture from tibialshaft; 3) connect masks of each respective slice; and 4) reconstruct a 3D-mesh. After reconstruction of 3D-models, 1) fragment volume; 2) articular surface of the posterior malleolar fragment; 3) articular surface of intact tibia and 4) articular surface of the medial malleolus were calculated by all three observers. A summary of this technique is shown on . www.traumaplatform.org. The inter-observer reliability of these measurements was calculated using the ICC, which can be interpreted as the kappa coefficient. Results. Measurements of the volume of posterior malleolar fracture fragments ranged from 357 to 2904 mm3 with an ICC of 1.00 (Confidence interval (CI) 0.999 – 1.000) Measurements of the articular surface of the posterior malleolar fracture fragment ranged from 25 to 252 mm2 with an ICC of 0.998 (CI 0.996 – 0.999); the articular surface of the intact tibia plafond ranged from 375 to 1124 mm2 (ICC 0.998, CI 0.996 – 0.999); and the articular surface of the medial malleolus ranged from 79 to 149 mm2 (ICC 0.978, CI 0.978 – 0.911). The categorical ratings for all ICC's were defined as almost perfect according to the system of Landis7. Discussion/Conclusion. This study showed that our Q3DCT-modelling technique. 2,3,4,5. is reliable and reproducible to reconstruct ankle fractures, in order to assess fracture characteristics of posterior malleolar fracture fragments. Future research will focus on the association between overall ankle fracture patterns according to Lauge-Hansen, and characterization of posterior malleolar fragment morphology. We hypothesise that supination-exorotation type fractures are associated with smaller (in volume and involved articularsurface) “pull-off” fragments, while pronation-exorotation type ankle fractures are associated with larger (in volume and involved articular surface) “push-off” fragments. The clinical relevance might be that smaller “pull-off” type fractures benefit from positioning screws, while larger “push-off” type fractures require direct open reduction and internal fixation of the posterior malleolar fragment


Bone & Joint Research
Vol. 6, Issue 5 | Pages 323 - 330
1 May 2017
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Objectives

Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load in vitro?

Methods

Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Staphylococcus epidermidis; Staphylococcus aureus; Pseudomonas aeruginosa; spore-forming Bacillus cereus; and yeast Candida albicans. The cylinders were exposed to incremental target temperatures (35°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C) for up to 3.5 minutes.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 7 | Pages 1041 - 1044
1 Jul 2010
Loughenbury PR Harwood PJ Tunstall R Britten S

Anatomical atlases document safe corridors for placement of wires when using fine-wire circular external fixation. The furthest posterolateral corridor described in the distal tibia is through the fibula. This limits the crossing angle and stability of the frame. In this paper we describe a new, safe Retro-Fibular Wire corridor, which provides greater crossing angles and increased stability. In a cadaver study, 20 formalin-treated legs were divided into two groups. Wires were inserted into the distal quarter of the tibia using two possible corridors and standard techniques of dissection identified the distance of the wires from neurovascular structures.

In both groups the posterior tibial neurovascular bundle was avoided. In group A the peroneal artery was at risk. In group B this injury was avoided. Comparison of the groups showed a significant difference (p < 0.001).

We recommend the Retro-Fibular wire technique whereby wires are inserted into the tibia mid-way between the posteromedial border of the fibula and the tendo Achillis, at 30° to 45° to the sagittal plane, and introduced from a posterolateral to an anteromedial position. Subsequently, when using this technique in 30 patients, we have had no neurovascular complications or problems relating to tethering of the peroneal tendons.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 736 - 740
1 May 2005
Tochigi Y Rudert MJ Brown TD McIff TE Saltzman CL

When performing the Scandinavian Total Ankle Replacement (STAR), the positioning of the talar component and the selection of mobile-bearing thickness are critical. A biomechanical experiment was undertaken to establish the effects of these variables on the range of movement (ROM) of the ankle.

Six cadaver ankles containing a specially-modified STAR prosthesis were subjected to ROM determination, under weight-bearing conditions, while monitoring the strain in the peri-ankle ligaments. Each specimen was tested with the talar component positions in neutral, as well as 3 and 6 mm of anterior and posterior displacement. The sequence was repeated with an anatomical bearing thickness, as well as at 2 mm reduced and increased thicknesses. The movement limits were defined as 10% strain in any ligament, bearing lift-off from the talar component or limitations of the hardware.

Both anterior talar component displacement and bearing thickness reduction caused a decrease in plantar flexion, which was associated with bearing lift-off. With increased bearing thickness, posterior displacement of the talar component decreased plantar flexion, whereas anterior displacement decreased dorsiflexion.