Aims. Bone demonstrates good healing capacity, with a variety of strategies being utilized to enhance this healing. One potential strategy that has been suggested is the use of stem cells to accelerate healing. Methods. The following databases were searched: MEDLINE, CENTRAL, EMBASE, Cochrane Database of Systematic Reviews, WHO-ICTRP, ClinicalTrials.gov, as well as reference checking of included studies. The inclusion criteria for the study were: population (any adults who have sustained a fracture, not including those with pre-existing bone defects); intervention (use of stem cells from any source in the fracture site by any mechanism); and control (fracture healing without the use of stem cells). Studies without a comparator were also included. The outcome was any reported outcomes. The study design was randomized controlled trials, non-randomized or observational studies, and case series. Results. In all, 94 eligible studies were identified. The clinical and methodological aspects of the studies were too heterogeneous for a meta-analysis to be undertaken. A narrative synthesis examined study characteristics, stem cell methods (source, aspiration, concentration, and application) and outcomes. Conclusion. Insufficient high-quality evidence is available to determine the efficacy of stem cells for
There is conjecture on the optimal timing to administer bisphosphonate therapy following operative fixation of low- trauma hip fractures. Factors include recommendations for early opportunistic commencement of osteoporosis treatment, and clinician concern regarding the effect of bisphosphonates on
Olecranon fractures are common injuries representing roughly 5% of pediatric elbow fractures. The traditional surgical management is open reduction and internal fixation with a tension band technique where the pins are buried under the skin and tamped into the triceps. We have used a modification of this technique, where the pins have been left out of the skin to be removed in clinic. The purpose of the current study is to compare the outcomes of surgically treated olecranon fractures using a tension-band technique with buried k-wires (PINS IN) versus percutaneous k-wires (PINS OUT). We performed a retrospective chart review on all pediatric patients (18 years of age or less) with olecranon fractures that were surgically treated at a pediatric academic center between 2015 to present. Fractures were identified using ICD-10 codes and manually identified for those with an isolated olecranon fracture. Patients were excluded if they had polytrauma, metabolic bone disease, were treated non-op or if a non-tension band technique was used (ex: plate/screws). Patients were then divided into 2 groups, olecranon fractures using a tension-band technique with buried k-wires (PINS IN) and with percutaneous k-wires (PINS OUT). In the PINS OUT group, the k-wires were removed in clinic at the surgeon's discretion once adequate
Introduction. The management of fracture-related infection has undergone radical progress following the development of international guidelines. However, there is limited consideration to the realities of healthcare in low-resource environments due to a lack of available evidence in the literature from these settings. Initial antimicrobial suppression to support fracture union is frequently used in low- and middle-income countries despite the lack of published clinical evidence to support its practice. This study aimed to evaluate the outcomes following initial antimicrobial suppression to support fracture union in the management of fracture-related infection. Materials & Methods. A retrospective review of consecutive patients treated with initial antimicrobial suppression to support
Aim. The treatment of fracture-related infections (FRI) focuses on obtaining
Introduction. Open fractures are fortunately rare but pose an even greater challenge due to poor soft tissues, in addition to poor bone quality. Co-morbidities and pre-existing medical conditions, in particular, peripheral vascular diseases make them often unsuitable for free flaps. We present our experience in treating severe open fractures of tibia with Acute Intentional Deformation (AID) to close the soft tissues followed by gradual correction of deformity to achieve anatomical alignment of the tibia and
Previously, we reported impaired biomechanical bone properties and inferior bone matrix quality in tachykinin1 (Tac1)-deficient mice lacking the sensory neuropeptide substance P (SP). Additionally, fracture callus development is affected by the absence of SP indicating a critical effect of sensory nerve fibers on bone health and regeneration. For α-calcitonin gene-related peptide (α-CGRP)-deficient mice, a profound distortion of bone microarchitecture has also been described. We hypothesize that SP and α-CGRP modulate inflammatory as well as pain-related processes and positively affect bone regeneration during impaired
Introduction. Frame configuration for the management of complex tibial fractures is highly variable and is dependent not only on fracture pattern and soft tissue condition but also surgeon preference. The optimal number of rings to use when designing a frame remains uncertain. Traditionally, larger, stiffer constructs with multiple rings per segment were thought to offer optimal conditions for bone healing, however, the concept of reverse dynamisation questions this approach. Materials & Methods. We compared clinical outcomes in 302 consecutive patients with tibial fractures treated in our unit with either a two-ring circular frame or a three-or-more-ring (3+) frame. The primary outcome measure was time spent in frame. Secondary outcomes were the incidence of malunion and the need for further surgical procedures to achieve bone union. The groups were evenly matched for age, co-morbidities, energy of injury mechanism, fracture classification, post-treatment alignment and presence of an open fracture. Results. The mean time in frame was 168 days for the 2-ring group and 200 days for the 3+ rings group (p=0.003). No significant difference was found in the rate of malunion (p=0.428) or the requirement for secondary surgical intervention to achieve union (p=0.363). No significant difference in time in frame was found between individual surgeons. Conclusions. This study finds that 2-ring frame constructs are a reliable option associated with significantly shorter duration of treatment and no increase in rates of adverse outcomes compared with larger, more complex frame configurations. Although this study cannot identify the underlying cause of the difference in treatment time between frame designs, it is possible that differences in mechanical stability lead to a more favourable strain environment for
Abstract. Background. Aim of this study is to determine the difference between re-operation rates after conventional Methods of fixation of patella fractures using Metallic implants and novel technique of all suture fixation using Ethibond or fiber tape. Methods. This is a retrospective comparative analysis involving 62 patients who had a transverse patellar fracture and underwent surgery between January 2013 to December 2021. Selected patients were divided, based on different fixation methods used, into four groups - TBW group, CC screw group, Encirclage group and Suture Fixation Group. Patients were followed till bone union was evident on radiographs. Number of patients in Metallic implant group undergoing repeat operation were compared with the patients who underwent patella fracture fixation using all suture technique. Mean and standard deviation (SD) were calculated for all continuous variables. Mean of the two groups was compared using unpaired t-test. Results. TBW was the most common method of fixation used in 41(66.1%) patients. 7 patients each underwent surgery using CC screw, Encirclage +/− TBW, and suture fixation respectively. Bone union was seen in about 85% of patients in all the groups suggesting all treatment modalities lead to good
It has been previously shown that Low-Magnitude High-Frequency Vibration (LMHFV) is able to enhance ovariectomy-induced osteoporotic fracture healing in rats.
Introduction. Non-union is an unfortunate outcome of the
Aim. Differentiation of infected (INF) nonunion from aseptic (AS) nonunion is crucial for the choice of intra- and postoperative treatment. Preoperative diagnosis of infected nonunion is challenging, especially in case of low-grade infection lacking clinical signs of infection. Standard blood markers such as C-reactive protein or leucocyte count do not aid in preoperative diagnosis. Proteomic profiling has shown promising results for differentiation of numerous chronic disease states, and in this study was applied to preoperative blood samples of patients with nonunion in an attempt to identify potential biomarkers. Method. This prospective multicenter study enrolled patients undergoing revision surgery of femur or tibia nonunion. Patients with implant removal after regular
Aim. Silver is known for its excellent antimicrobial activity, including activity against multiresistant strains. The aim of the current study was to analyze the biocompatibility and potential influence on the
Fractures of the humeral diaphysis occur in a bimodal distribution and represent 3-5% of all fractures. Presently, the standard treatment of isolated humeral diaphyseal fractures is nonoperative care using splints, braces, and slings. Recent data has questioned the effectiveness of this strategy in ensuring
Fractures of the humeral diaphysis occur in a bimodal distribution and represent 3-5% of all fractures. Presently, the standard treatment of isolated humeral diaphyseal fractures is nonoperative care using splints, braces, and slings. Recent data has questioned the effectiveness of this strategy in ensuring
Treatment of segmental bone defects remains a major clinical problem, and innovative strategies are often necessary to successfully reconstruct large volumes of bone. When fractures occur, the resulting hematoma serves as a reservoir for growth factors and a space for cell infiltration, both crucial to the initiation of bone healing. Our previous studies have demonstrated very clear ultrastructural differences between fracture hematomas formed in normally healing fractures and those formed in segmental bone defects. However, there is little information available regarding potential differences in the underlying gene expression between hematomas formed in normal fractures, which usually heal by themselves, and segmental bone defects, which do not. Therefore, the aim of this study was to identify differences in gene expression within hematomas collected from 0.5 mm (normal fracture) and 5 mm (segmental bone defect) fracture sites during the earliest stages of bone healing. Osteotomies of 0.5 and 5 mm in the femur of Fisher 344 rats were stabilized with external fixators (RISystem AG). After 3 days the rats were sacrificed, and the fracture hematomas were collected for RNA-sequencing. Ingenuity pathway analysis (IPA) was used to identify upstream regulators and biological functions that were significantly enriched with differentially expressed genes from the RNA-sequencing analysis. Animal procedures were conducted following the IACUC protocol of the UT Health Science Center San Antonio. Key upstream regulators of bone formation were less active (e.g. TGFB1, FGF2, SMAD3) or even inhibited (e.g. WNT3A, RUNX2, BMP2) in non-healing defects when compared to normally healing fractures. Many upstream regulators that were uniquely enriched in healing defects were molecules recently discovered to have osteogenic effects during
Patellar fractures account for approximately 1% of all fractures. Open reduction and internal fixation is recommended to restore extensor continuity and articular congruity. However, complications such as nonunion and symptomatic hardware, still exist. Furthermore, there is a risk of re-fracturing of the healed bone during the removal of the implants. Magnesium (Mg), a biodegradable metal, has elastic moduli and compressive yield strength that are comparable to those of natural bone. Our previous study showed that released Mg ions enhanced
Introduction. Osteogenesis imperfect (OI) is a geno- and phenotypically heterogeneous group of congenital collagen disorders characterized by fragility and microfractures resulting in long bone deformities. OI can lead to progressive femoral coxa vara from bone and muscular imbalance and continuous microfracture about the proximal femur. If left untreated, patients develop Trendelenburg gait, leg length discrepancy, further stress fracture and acute fracture at the apex of the deformity, impingement and hip joint degeneration. In the OI patient, femoral coxa vara cannot be treated in isolation and consideration must be given to protecting the whole bone with the primary goal of verticalization and improved biomechanical stability to allow early loading, safe standing, re-orientation of the physis and avoidance of untreated sequelae. Implant constructs should therefore be designed to accommodate and protect the whole bone. The normal paediatric femoral neck shaft angle (FNSA) ranges from 135 to 145 degrees. In OI the progressive pathomechanical changes result in FNSA of significantly less than 120 degrees and decreased Hilgenreiner epiphyseal angles (HEA). Proximal femoral valgus osteotomy is considered the standard surgical treatment for coxa vara and multiple surgical techniques have been described, each with their associated complications. In this paper we present the novel technique of controlling femoral version and coronal alignment using a tubular plate and long bone protection with the use of teleoscoping rods. Methodology. After the decision to operate had been made, a CT scan of the femur was performed. A 1:1 scale 3D printed model (AXIAL3D, Belfast, UK) was made from the CT scan to allow for accurate implant templating and osteotomy planning. In all cases a subtrochanteric osteotomy was performed and fixed using a pre-bent 3.5 mm 1/3 tubular plate. The plate was bent to allow one end to be inserted into the proximal femur to act as a blade. A channel into the femoral neck was opened using a flat osteotome. The plate was then tapped into the femoral neck to the predetermined position. The final position needed to allow one of the plate holes to accommodate the growing rod. This had to be determined pre operatively using the 3D printed model and the implants. The femoral canal was reamed, and the growing rod was placed in the femur, passing through the hole in the plate to create a construct that could effectively protect both the femoral neck and the full length of the shaft. The distal part of the plate was then fixed to the shaft using eccentric screws around the nail to complete the construct. Results. Three children ages 5,8 and 13 underwent the procedure. Five coxa vara femurs have undergone this technique with follow-up out to 62 months (41–85 months) from surgery. Improvements in the femoral neck shaft angle (FNSA) were av. 18. o. (10–38. o. ) with pre-op coxa vara FNSA av. 99. o. (range 87–114. o. ) and final FNSA 117. o. (105–125. o. ). Hilgenreiner's epiphyseal angle was improved by av. 29. o. (2–58. o. ). However only one hip was restored to <25. o. In the initial technique employed for 3 hips, the plates were left short in the neck to avoid damaging the physis. This resulted in 2 of 3 hips fracturing through the femoral neck above the plate at approximately 1 year. There were revisions of the 3 hips to longer plates to prevent intra-capsular stress riser. All osteotomies united and both intracapsular
Age-related fragility fractures are highly correlated with the loss of bone integrity and deteriorated morphology of the osteocytes. Previous studies have reported low-magnitude high-frequency vibration(LMHFV) promotes osteoporotic diaphyseal
Introduction. Metabolic bone disease encompasses disorders of bone mineralization, abnormal matrix formation or deposition and alteration in osteoblastic and osteoclastic activity. In the paediatric cohort, patients with metabolic bone disease present with pain, fractures and deformities. The aim was to evaluate the use of lateral entry rigid intramedullary nailing in lower limbs in children and adolescents. Materials and Methods. Retrospective review was performed for an 11-year period. Lower limb rigid intramedullary nailing was performed in 27 patients with a total of 63 segments (57 femora, 6 tibiae). Majority of patients had underlying diagnoses of osteogenesis imperfecta or fibrous dysplasia (including McCune Albright disease). Mean age at surgery was 14 years. Indications for surgery included acute fractures, prophylactic stabilisation, previous nonunion and malunion, deformity correction and lengthening via distraction osteogenesis. Results. All