Advertisement for orthosearch.org.uk
Results 1 - 20 of 45
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 8 - 8
7 Aug 2024
Rix J du Rose A Mellor F De Carvalho D Breen A
Full Access

Study purpose and background. Kinematic variables have been identified as potential biomarkers for low back pain patients; however, an in-depth comparison between chronic (n=22), acute (n=15), and healthy controls (n=136) has not been done. This retrospective data analysis compared intervertebral lumbar motion parameters, angular range of motion, translation, maximum disc height, motion share inequality (MSI) and variability (MSV), and laxity, between these groups. Methods and results. Kinematic parameters were determined using video tracking techniques utilising quantitative fluoroscopy (QF), during both weight-bearing and recumbent controlled sagittal bending tasks. Data was analysed for normality, and appropriate statistical tests were applied to determine differences between groups. There were no significant differences between the groups for age, height, weight and sex. Whilst few differences were found between acute and healthy groups, differences were shown between both chronic and healthy, and acute and chronic groups for all six parameters. Of particular note were examples of differences in the motion share parameters between the acute and chronic populations, with an increased MSI in the chronic group during recumbent flexion, and MSV during recumbent extension, and inversely an increase in MSV in the acute group during weight-bearing flexion. Conclusion. Analysis of intervertebral lumbar motion provides valuable insights into kinematic differences between chronic, acute, and healthy control populations. These findings suggest that there is variation between the groups which is knowledge that may benefit management strategies. Further exploration of the time varying data is warranted to explore how such differences may relate to the motion share inequalities and variability shown. Conflicts of Interest. No conflicts of interest. Sources of Funding. No funding obtained


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 15 - 15
1 Apr 2012
Clamp J Bayley E Boszczyk B
Full Access

Consecutive case series. To evaluate the efficacy of a strict stepwise radioanatomical procedure protocol in avoiding neurological complications through tool malplacement in fluoroscopy guided percutaneous procedures of the thoracic spine. Fluoroscopy guided percutaneous access to thoracic vertebral bodies is technically demanding. There is a trend towards computed tomography (CT) guidance on grounds of perceived lesser risk of spinal canal instrument malplacement. CT is however not always readily accessible and a safe technique for fluoroscopy guided procedures therefore desirable. 350 consecutive fluoroscopy guided percutaneous procedures (biopsy, vertebroplasty or kyphoplasty) covering all thoracic vertebral levels T1-T12 were performed according to a strict stepwise radioanatomical protocol. The crucial step of the protocol was not to advance the tool beyond the anterior-posterior (ap) projection of the medial pedicle wall until the tip of the instrument had been verified to have reached the posterior vertebral cortex in the lateral projection. The neurological status of patients was assessed through clinical examination prior to, immediately after the procedure and before discharge. Percutaneous instrument placement in the targeted thoracic vertebral body was achieved in all cases and the stepwise radioanatomical protocol was followed in all cases. There was no case of neurological deterioration in the case series. Conclusion: Attention to radiographic landmarks, specifically not crossing the ap projection of the medial pedicle cortex prior to reaching the posterior vertebral wall in the lateral projection, allows neurologically safe performance of fluoroscopy guided percutaneous procedures of the thoracic spine. This simple protocol is particularly useful when access to CT is limited


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 8 - 8
1 Sep 2019
Breen A Hemming R Mellor F Breen A
Full Access

Background. Dynamic measurement of continuous intervertebral motion in low back pain (LBP) research in-vivo is developing. Lumbar motion parameters with the features of biomarkers are emerging and show promise for advancing understanding of personalised biometrics of LBP. However, measurement of changes over time inevitably involve error, due to subjects' natural variation and/or variation in the measurement process. Thus, intra-subject repeatability of parameters to measure changes over time should be established. Methods. Seven lumbar spine motion parameters, measured using quantitative fluoroscopy (QF), were assessed for intra-subject repeatability: Intervertebral range-of-motion (IV-RoM), laxity, motion sharing inequality (MSI), motion sharing variability (MSV), flexion translation and flexion disc height. Intra-subject reliability (ICC) and minimal detectable change (MDC95) of baseline and 6-week follow-up measurements were obtained for 109 healthy volunteers (54 coronal and 55 sagittal). Results. Reliability was substantial to excellent for repeated measurements of IV-RoM, laxity, flexion translation and disc height during recumbent passive motion (ICC:0.69–0.95) and during active weight-bearing motion (ICC:0.64–0.92). MSI was moderate to excellent across both positions (ICC:0.43–0.91). The reliability of MSV was generally poorer for both positions (0.14–0.65). For all parameters, measurement error exceeded 42%. Conclusion. Recumbent IV-RoM, laxity and disc height demonstrated the best repeatability at 6-weeks suggesting they may be better outcome moderators in clinical studies than other variables. However measurement errors for all parameters were higher than the minimal changes of interest. These results are limited to healthy controls and should be regarded as reference values. Similar studies in CNSLBP patients are required. No conflicts of interest. Sources of Funding: Dr Rebecca Hemming received a Seedcorn Bursary from the Cardiff Institute of Tissue Engineering and Repair (CITER) and Professor Alan Breen received a project grant from the European Chiropractors Union Research Fund (ECURF)


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 46 - 46
1 Sep 2019
Breen A Hemming R Claerbout E Breen A
Full Access

Purpose and background. Static plain radiographs at the end of uncontrolled bending are the current standard of care for measuring translatory slip in back pain patients. Quantitative fluoroscopy systems (QF) that employ standardised bending protocols have been found to improve precision and reduce dose, but comparative data are lacking. We compared 4 QF methods with static radiographs in a control population, calculating ranges, population variation and measurement errors over 6 weeks. Methods. Fifty-four healthy controls (F=22, M=23) received passive recumbent and active weight bearing QF screenings during controlled motion, plus still fluoro imaging in neutral, flexion and extension. The translatory slip of all levels from L2-S1 was determined for each condition using bespoke image tracking codes (Matlab) and pooled to provide means and ranges of variation (+/-1.96SD). The pooled measurement error, or minimal detectable change (MDC. 95. ), reflecting the intra subject repeatability over 6 weeks was calculated. Ranges of translation for each level (L2-S1), for each type of motion were also calculated. Results. Static radiographs at the end of uncontrolled flexion gave the greatest variation and the worst repeatability, while QF recumbent passive and active weight bearing motion with flexion recorded during the motion had ¼ less variation and twice the repeatability. For individual levels, L2-3 had significantly higher flexion ranges in controlled motion than uncontrolled motion, whereas the converse was true at L4-5 (P<0.001). Conclusion. Dynamic QF measurement of flexion translatory slip gives ¼ less population variation and half the measurement error of static radiographs when measured in the same participants. No conflicts of interest. No funding obtained


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_6 | Pages 33 - 33
1 Feb 2016
Breen A Mellor F Breen A Hilton A
Full Access

Purpose and Background:. Despite the rise of back pain disability, objective mechanical assessment is generally lacking. Quantification of intervertebral kinematics using fluoroscopy provides objective measurement, but its use in clinical practice has not been assessed. This study reviewed cases referred to one UK site for lumbar spine quantitative fluoroscopic (QF) examinations and compared the reasons for referral with the findings reported. Methods and Results:. Fifty-seven consecutive referrals were reviewed. Patients underwent passive recumbent and/or weight-bearing active examinations in either the sagittal or both the sagittal and coronal planes. Data were extracted from anonymised QF reports and analysed for patient characteristics, reason for referral, working diagnosis at referral, level(s) of interest, previous surgical procedures and findings reported. Reports were also thematically analysed for key findings. Most patients had chronic back conditions of moderate or severe intensity. Most (38/57) were male, mean age 47 (SD 13.1) and mean complaint duration 5.4 years (0.3–32 years). They were referred mainly to investigate segmental instability (19/54) or spondylolisthesis (13/54) to inform either surgical referral or conservative management. Instability was reported in only 8/57 cases, but restricted and hypermobile levels in the same patient was also common (13/57). In 11 cases no mechanical abnormality was found. Conclusion:. QF studies were requested mainly to investigate instability and inform surgical referral, but segmental instability was more frequently suspected than found. Disproportionate motion sharing was not unusual. Longitudinal studies are needed to assess the effects of this investigation on care allocation, clinical decisions, patient outcomes and health care costs


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 543 - 550
1 May 2023
Abel F Avrumova F Goldman SN Abjornson C Lebl DR

Aims. The aim of this study was to assess the accuracy of pedicle screw placement, as well as intraoperative factors, radiation exposure, and complication rates in adult patients with degenerative disorders of the thoracic and lumbar spines who have undergone robotic-navigated spinal surgery using a contemporary system. Methods. The authors reviewed the prospectively collected data on 196 adult patients who had pedicle screws implanted with robot-navigated assistance (RNA) using the Mazor X Stealth system between June 2019 and March 2022. Pedicle screws were implanted by one experienced spinal surgeon after completion of a learning period. The accuracy of pedicle screw placement was determined using intraoperative 3D fluoroscopy. Results. A total of 1,123 pedicle screws were implanted: 1,001 screws (89%) were placed robotically, 63 (6%) were converted from robotic placement to a freehand technique, and 59 (5%) were planned to be implanted freehand. Of the robotically placed screws, 942 screws (94%) were determined to be Gertzbein and Robbins grade A with median deviation of 0.8 mm (interquartile range 0.4 to 1.6). Skive events were noted with 20 pedicle screws (1.8%). No adverse clinical sequelae were noted in the 90-day follow-up. The mean fluoroscopic exposure per screw was 4.9 seconds (SD 3.8). Conclusion. RNA is highly accurate and reliable, with a low rate of abandonment once mastered. No adverse clinical sequelae occurred after implanting a large series of pedicle screws using the latest generation of RNA. Understanding of patient-specific anatomical features and the real-time intraoperative identification of risk factors for suboptimal screw placement have the potential to improve accuracy further. Cite this article: Bone Joint J 2023;105-B(5):543–550


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 739 - 745
1 Apr 2021
Mehta JS Hodgson K Yiping L Kho JSB Thimmaiah R Topiwala U Sawlani V Botchu R

Aims. To benchmark the radiation dose to patients during the course of treatment for a spinal deformity. Methods. Our radiation dose database identified 25,745 exposures of 6,017 children (under 18 years of age) and adults treated for a spinal deformity between 1 January 2008 and 31 December 2016. Patients were divided into surgical (974 patients) and non-surgical (5,043 patients) cohorts. We documented the number and doses of ionizing radiation imaging events (radiographs, CT scans, or intraoperative fluoroscopy) for each patient. All the doses for plain radiographs, CT scans, and intraoperative fluoroscopy were combined into a single effective dose by a medical physicist (milliSivert (mSv)). Results. There were more ionizing radiation-based imaging events and higher radiation dose exposures in the surgical group than in the non-surgical group (p < 0.001). The difference in effective dose for children between the surgical and non-surgical groups was statistically significant, the surgical group being significantly higher (p < 0.001). This led to a higher estimated risk of cancer induction for the surgical group (1:222 surgical vs 1:1,418 non-surgical). However, the dose difference for adults was not statistically different between the surgical and non-surgical groups. In all cases the effective dose received by all cohorts was significantly higher than that from exposure to natural background radiation. Conclusion. The treatment of spinal deformity is radiation-heavy. The dose exposure is several times higher when surgical treatment is undertaken. Clinicians should be aware of this and review their practices in order to reduce the radiation dose where possible. Cite this article: Bone Joint J 2021;103-B(4):1–7


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 5 - 10
1 Jan 2020
Cawley DT Rajamani V Cawley M Selvadurai S Gibson A Molloy S

Aims. Intraoperative 3D navigation (ION) allows high accuracy to be achieved in spinal surgery, but poor workflow has prevented its widespread uptake. The technical demands on ION when used in patients with adolescent idiopathic scoliosis (AIS) are higher than for other more established indications. Lean principles have been applied to industry and to health care with good effects. While ensuring optimal accuracy of instrumentation and safety, the implementation of ION and its associated productivity was evaluated in this study for AIS surgery in order to enhance the workflow of this technique. The aim was to optimize the use of ION by the application of lean principles in AIS surgery. Methods. A total of 20 consecutive patients with AIS were treated with ION corrective spinal surgery. Both qualitative and quantitative analysis was performed with real-time modifications. Operating time, scan time, dose length product (measure of CT radiation exposure), use of fluoroscopy, the influence of the reference frame, blood loss, and neuromonitoring were assessed. Results. The greatest gains in productivity were in avoiding repeat intraoperative scans (a mean of 248 minutes for patients who had two scans, and a mean 180 minutes for those who had a single scan). Optimizing accuracy was the biggest factor influencing this, which was reliant on incremental changes to the operating setup and technique. Conclusion. The application of lean principles to the introduction of ION for AIS surgery helps assimilate this method into the environment of the operating theatre. Data and stakeholder analysis identified a reproducible technique for using ION for AIS surgery, reducing operating time, and radiation exposure. Cite this article: Bone Joint J. 2020;102-B(1):5–10


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 59 - 59
1 Jun 2012
Quraishi NA Thambiraj S
Full Access

Introduction/Aim. Intra-operative localisation of thoracic spine levels can be difficult due to anatomical constraints such as scapular shadow, patient's size and poor bone quality. This is particularly true in cases of thoracic discectomies in which the vertebral bodies appear normal. We describe a simple and reliable technique to identify the correct thoracic spine level. Methods. After induction of general anaesthesia, the patient is placed prone and the pedicle of interest is identified using fluoroscopy. A ‘K’ wire is then inserted percutaneously into this pedicle under image guidance (confirmed in the antero-posterior (AP) and lateral views). The ‘K’ wire is then cut flush and the patient is then positioned laterally and the intended procedure is performed. Results. We routinely use this technique in all our thoracic discectomies. Placing the ‘K’ wire into a fixed point like the pedicle, facilitates rapid intra-operative viewing of the level of interest and is removed easily at the conclusion of surgery. Conclusion. Per-operative placement of the ‘K’ wire avoids the patient undergoing two procedures as some of the other invasive techniques have described in the literature for correct level identification. Furthermore, this technique is simple and requires no more ability than placing an implant in the pedicle under fluoroscopy. It has the added advantage of reducing anaesthetic, surgery and fluoroscopy time


Bone & Joint Open
Vol. 5, Issue 9 | Pages 809 - 817
27 Sep 2024
Altorfer FCS Kelly MJ Avrumova F Burkhard MD Sneag DB Chazen JL Tan ET Lebl DR

Aims

To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation.

Methods

Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 35 - 35
1 Sep 2019
Breen A Mellor F Breen A
Full Access

Purpose and background. Recent research has identified possible functional biomarkers in chronic, nonspecific back pain (CNSLBP) based on intervertebral kinematics. Although excessive IV-RoM is no longer regarded as a clear motion abnormality, some studies have found subtle kinematic measures such as mid-range laxity and motion sharing inequality to be greater in CNSLBP patients. We studied a group of such patients who were investigated following failed interventions in terms of these subtle measures. Methods. Thirty-seven patients (mean age 47.5 years SD10.87, F14, M23) with CNSLBP that had recently failed to respond to a range of treatments and 37 healthy controls received passive recumbent lumbar intervertebral flexion assessments following a standardised quantitative fluoroscopy (QF) protocol. Groups were compared for motion sharing inequality (MSI) and variability (MSV) (L2-S1), for level by level laxity and translation, and with reference ranges of these from a separate group of healthy controls (n=54). Results. Patients had significantly higher MSI values than controls (p=0.01), but not MSV (p=0.79). Laxity and translation above normative reference limits were not more prevalent in patients. Eleven patients had had surgical or interventional procedures, 10 had spondylolisthesis or pars defects and 16 no disruptive elements. Those who had received invasive procedures (e.g. disc replacement, fusion) had significantly higher median MSI values than those with spondylolistheses/pars defects (p=0.02) or no disruption (p=0.001). Conclusion. Reduced individual level intervertebral restraint during passive recumbent motion was not associated with pain in treatment resistant patients, but uneven restraint between levels (MSI) appeared to be. Future work should investigate the reasons for this. No conflicts of interest. No funding obtained


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 62 - 62
1 Jun 2012
Hughes D Hutchinson J Nelson I Harding I
Full Access

Computer assisted surgery is becoming more prevalent in spinal surgery with most published literature suggesting an improvement in accuracy and reduction in radiation exposure. This has been particularly highlighted in scoliosis surgery with regard to the placement of pedicle screws. Anecdotally this has been challenged with concerns with regard to the steep learning curve using this equipment and the high cost of purchasing said systems. The more traditional technique utilises the surgeon's knowledge of anatomic landmarks and tactile palpation added with fluoroscopy to place pedicle screws. We retrospectively looked at 161 scoliosis corrections performed using this technique over three years by 3 main surgeons at the same centre (Frenchay). With an average of 10 levels per procedure and over 2000 pedicle screws inserted. We reviewed the radiation time exposure and dose of radiation given during each case. Our results compared favourably to published data using computer and robot assisted surgery with an average exposure time of 80 seconds and a mean dose of 144 mGy using a standard C-arm guided fluoroscopy. Our study suggests that armed with good surgical knowledge and technique it is possible to obtained low levels of radiation exposure of benefit to both patient and the operating team


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 73 - 73
1 Jun 2012
Patel MS Young A Sell P
Full Access

Aim. To identify a means to reduce the duration and radiation dose coupled with fluoroscopic guided nerve root blocks (NRB). Method. Consecutive prospective two cohort comparative study. A similar method performed during CT guided NRBs was employed to guide needle placement for transforaminal nerve root injections with the aid of static MR images and fluoroscopy. Axial MR images at the level of the target nerve root were used. An angle of inclination of 60 degrees was created from the nerve root to the skin of the back, the apex of this to represent the site of needle introduction. Triangulation on the MRI enabled the lateral entry point to be determined. The transforaminal injections were then performed with the simple expedient of a skin marker line at the appropriate lateral distance from the midline for needle entry. The radiation dose and fluoroscopic time as measured by the image intensifier were recorded. This method was performed for 20 patients and compared to the same parameters for 23 previous patients in whom the transforaminal injections were performed without such a technique. Results. 20 patients in the navigated arm (group 1) and 23 in the non-navigated (group 2). Average fluoroscopic time (seconds) was 17.7 seconds (range 8-40) for group 1 and 16.4 seconds (range 6-45) for group 2 (P value 0.625). Radiation dose measured was 79.76 cgycm. 2. (range 8-212) for group 1 and 63.05 cgycm. 2. (range 8-260) for group 2 (P value 0.247). Conclusion. This method of navigating nerve root blocks via fluoroscopy did not appear to reduce the duration of the procedure or radiation dose involved on objective data. Subjectively it was found to be a useful training aid for triangulation for those new to the technique but the available objective evidence was not obtained


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 81 - 81
1 Jun 2012
Sharma H Spearman C Walter D Breakwell L Chiverton N Michael A Cole A
Full Access

Introduction. Medical Exposure Directive of the European Commission, 97/43/Euratom recommended setting-up local national diagnostic reference levels (DRLs) for the most common radiological examinations in order to comply with the law and to maintain safe clinical practice. There are no guidelines for spinal diagnostic and therapeutic procedures. The aims of this study were to evaluate local radiation doses & screening times for diagnostic spinal blocks, to look at PACS image intensifier films for diagnostic representation and to assess the accuracy of data in IR(ME) document. Materials and Methods. Between 1/01/2009 and 15/07/2010, all spinal blocks done under care of three spinal surgeons (LB/NC/AAC) were reviewed. Images revisited on PACS for confirmation. We reviewed 229 patients (included single & two levels nerve root blocks, facet joint and lysis blocks). Data were collected with regard to radiation dose, screening times, third-quartile values used to establish DRLs, IR(ME) documentation and PACS fluoroscopic image documentation. Results. Third quartile single level NRB DAP (Dose area product) was 111.5 cGyCm2. Single level NRB screening time was mean-0.13, third quartile-0.2 min. Nerve specific dosimetry included L5 nerve (0.2 min; 119cGyCm2) and S1 nerve (0.2 min; 118.7cGyCm2). Mean ‘Click: Block ratio’ (last click for PACS/Block) was 22.4 (SD=7.05, range 10 to 48). Local fluoroscopic documentation was 87.2%. Conclusions. There are no national standards in radiation dosimetry for diagnostic spinal blocks. We recommend that all spinal units in the UK should evaluate their own DRLs to help establish national guidelines for fluoroscopy-guided spinal procedures. Representative fluoroscopic image documentation on PACS was 87% locally. It is a joint responsibility of radiographer & operating surgeon to make it 100% to reduce medicolegal risks


The Bone & Joint Journal
Vol. 99-B, Issue 12 | Pages 1658 - 1664
1 Dec 2017
Ahmad A Subramanian T Panteliadis P Wilson-Macdonald J Rothenfluh DA Nnadi C

Aims. Magnetically controlled growing rods (MCGRs) allow non-invasive correction of the spinal deformity in the treatment of early-onset scoliosis. Conventional growing rod systems (CGRS) need repeated surgical distractions: these are associated with the effect of the ‘law of diminishing returns’. The primary aim of this study was to quantify this effect in MCGRs over sequential distractions. . Patients and Methods. A total of 35 patients with a maximum follow-up of 57 months were included in the study. There were 17 boys and 18 girls with a mean age of 7.4 years (2 to 14). True Distraction (TD) was determined by measuring the expansion gap on fluoroscopy. This was compared with Intended Distraction (ID) and expressed as the ‘T/I’ ratio. The T/I ratio and the Cobb angle were calculated at several time points during follow-up. Results. The mean follow-up was 30 months (6 to 57). There was a significant decrease in the mean T/I ratio over time (convex rod at 3 months 0.81, . sd. 0.58 vs 51 months 0.17, . sd . 0.16, p = 0.0001; concave rod at 3 months 0.93, . sd. 0.67 vs 51 months 0.18, . sd. 0.15, p = 0.0001). A linear decline of the mean T/I ratios was noted for both convex rods (r. 2. = 0.90, p = 0.004) and concave rods (r. 2. = 0.81, p = 0.015) over 51 months. At the 24-month follow-up stage, there was a significant negative correlation between the mean T/I ratio of the concave rod with weight (r = -0.59, p = 0.01), age (r = -0.59, p = 0.01), and BMI of the child (r = -0.54, p = 0.01). Conclusions. The ‘law of diminishing returns’ is also seen after serial distraction using MCGR. Compared to previously published data for CGRS, there is a gradual linear decline rather than a rapid initial decline in lengthening. In older, heavier children a reduced distraction ratio in the concave rod of the MCGR device is noted over time. Cite this article: Bone Joint J 2017;99-B:1658–64


The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 944 - 950
1 Jul 2017
Fan G Fu Q Zhang J Zhang H Gu X Wang C Gu G Guan X Fan Y He S

Aims. Minimally invasive transforaminal lumbar interbody fusion (MITLIF) has been well validated in overweight and obese patients who are consequently subject to a higher radiation exposure. This prospective multicentre study aimed to investigate the efficacy of a novel lumbar localisation system for MITLIF in overweight patients. Patients and Methods. The initial study group consisted of 175 patients. After excluding 49 patients for various reasons, 126 patients were divided into two groups. Those in Group A were treated using the localisation system while those in Group B were treated by conventional means. The primary outcomes were the effective radiation dosage to the surgeon and the exposure time. Results. There were 62 patients in Group A and 64 in Group B. The mean effective dosage was 0.0217 mSv (standard deviation (. sd. ) 0.0079) in Group A and 0.0383 mSv (. sd. 0.0104) in Group B (p <  0.001). The mean fluoroscopy exposure time was 26.42 seconds (. sd. 5.91) in Group A and 40.67 seconds (. sd. 8.18) in Group B (p < 0.001). The operating time was 175.56 minutes (. sd. 32.23) and 206.08 minutes (. sd. 30.15) (p < 0.001), respectively. The mean pre-operative localisation time was 4.73 minutes (. sd. 0.84) in Group A and 7.03 minutes (. sd. 1.51) in Group B (p < 0.001). The mean screw placement time was 47.37 minutes (. sd. 10.43) in Group A and 67.86 minutes (. sd. 14.15) in Group B (p < 0.001). The pedicle screw violation rate was 0.35% (one out of 283) in Group A and 2.79% (eight out of 287) in Group B (p = 0.020). Conclusion. The study shows that the localisation system can effectively reduce radiation exposure, exposure time, operating time, pre-operative localisation time, and screw placement time in overweight patients undergoing MITLIF. Cite this article: Bone Joint J 2017;99-B:944–50


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_6 | Pages 35 - 35
1 Feb 2016
Mellor F Breen A Thomas P Thompson P
Full Access

Purpose and Background:. To compare static and dynamic lumbar intervertebral ranges of motion (IV-RoM) in patients with chronic, nonspecific low back pain with upper and lower cut off values derived from healthy controls when variability and measurement errors were reduced. Measurements from functional radiographs suffer from high variability and measurement errors, making cut off values for excessive or insufficient motion problematical. This study compared maximum lumbar IV-RoM and maximum IV-RoM at any point in continuous motion sequences in patients with chronic, non-specific back pain with upper and lower cut off values for L2 to L5 from matched controls using quantitative fluoroscopy, where variation and measurement errors were reduced. Methods and Results:. Participants underwent passive recumbent examinations in the sagittal and coronal planes. Values based on were developed for both maximum and continuous motion in controls (n=40). Fishers exact test was used to analyse proportions of patients whose IV-RoMs exceeded reference values. For maximum IV-RoM in patients, there were no statistically significant differences between groups for the lower value. Only flexion at L4/5 significantly exceeded the upper value (p=0.03). For continuous IV-RoM, left L3/4 (p=0.01) and right L4/5 (p=0.01) were significantly below the lower cut off values. Both flexion L4/5 (p=0.05) and left L3/4 (p=0.01) were significantly above the upper cut off values. Conclusions:. Controlling variability and reducing errors allowed meaningful upper and lower cut off values to be produced for both static and dynamic IV-RoM and may lead to better treatment decisions for those with suspected inter-vertebral stiffness or hypermobility


Bone & Joint Research
Vol. 9, Issue 10 | Pages 653 - 666
7 Oct 2020
Li W Li G Chen W Cong L

Aims

The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease.

Methods

A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_4 | Pages 5 - 5
1 Feb 2014
Mellor F Breen A
Full Access

Background and purpose. Investigating inter-vertebral biomechanics in vivo using end-of-range imaging is difficult due to high intra subject variation, measurement errors and insufficient data. Quantitative fluoroscopy (QF) can reliably measure continuous motion but may suffer from contamination from uncontrolled loading and muscle contraction which compromises comparisons between studies and limits interpretation of results. This study presents the methods used to overcome these limitations. Methods and results. Forty chronic, non-specific low back pain (CNSLPB) patients and 40 matched controls underwent QF using a passive recumbent protocol which standardised the rate and range of trunk rotation, thus reducing intra-subject variation and excluding loading and muscle contraction factors. Left, right, flexion and extension were recorded from L2-5 and vertebral motion registered using image processing algorithms, Resultant continuous inter-vertebral rotation data were normalised to produce proportional contributions of each segment throughout the trunk bend. The expected continuous proportional contributions at each level and direction were determined by calculating reference intervals (mean +/− 2SD) from controls. Prevalence of patients exceeding these ranges was determined and the association with CNSLBP calculated using Chi-squared analysis. Additionally the variance of the normalised data throughout the continuous motion for each direction was determined and summed to produce an combined number. This was used to measure the difference between patients and controls and entered into ROC curve analysis to investigate discrimination between patients and controls. Conclusion. A methodology for assessment of the differences between the continuous in vivo spine kinematics of CNSLBP patients and healthy controls has been developed and will be presented


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 542 - 546
1 Mar 2021
Milosevic S Andersen GØ Jensen MM Rasmussen MM Carreon L Andersen MØ Simony A

Aims

The aim of this study was to investigate the efficacy of coccygectomy in patients with persistent coccydynia and coccygeal instability.

Methods

The Danish National Spine Registry, DaneSpine, was used to identify 134 consecutive patients who underwent surgery, performed by a single surgeon between 2011 and 2019. Routine demographic data, surgical variables, and patient-reported outcomes, including a visual analogue scale (VAS) (0 to 100) for pain, Oswestry Disability Index (ODI), EuroQol five-dimension questionnaire (EQ-5D), and the Physical Component Score (PCS) and Mental Component Score (MCS) of the 36-Item Short-Form Health Survey questionnaire (SF-36) were collected at baseline and one-year postoperatively.