Study purpose and background. Kinematic variables have been identified as potential biomarkers for low back pain patients; however, an in-depth comparison between chronic (n=22), acute (n=15), and healthy controls (n=136) has not been done. This retrospective data analysis compared intervertebral lumbar motion parameters, angular range of motion, translation, maximum disc height, motion share inequality (MSI) and variability (MSV), and laxity, between these groups. Methods and results. Kinematic parameters were determined using video tracking techniques utilising quantitative
Consecutive case series. To evaluate the efficacy of a strict stepwise radioanatomical procedure protocol in avoiding neurological complications through tool malplacement in
Background. Dynamic measurement of continuous intervertebral motion in low back pain (LBP) research in-vivo is developing. Lumbar motion parameters with the features of biomarkers are emerging and show promise for advancing understanding of personalised biometrics of LBP. However, measurement of changes over time inevitably involve error, due to subjects' natural variation and/or variation in the measurement process. Thus, intra-subject repeatability of parameters to measure changes over time should be established. Methods. Seven lumbar spine motion parameters, measured using quantitative
Purpose and background. Static plain radiographs at the end of uncontrolled bending are the current standard of care for measuring translatory slip in back pain patients. Quantitative
Purpose and Background:. Despite the rise of back pain disability, objective mechanical assessment is generally lacking. Quantification of intervertebral kinematics using
Aims. The aim of this study was to assess the accuracy of pedicle screw placement, as well as intraoperative factors, radiation exposure, and complication rates in adult patients with degenerative disorders of the thoracic and lumbar spines who have undergone robotic-navigated spinal surgery using a contemporary system. Methods. The authors reviewed the prospectively collected data on 196 adult patients who had pedicle screws implanted with robot-navigated assistance (RNA) using the Mazor X Stealth system between June 2019 and March 2022. Pedicle screws were implanted by one experienced spinal surgeon after completion of a learning period. The accuracy of pedicle screw placement was determined using intraoperative 3D
Aims. To benchmark the radiation dose to patients during the course of treatment for a spinal deformity. Methods. Our radiation dose database identified 25,745 exposures of 6,017 children (under 18 years of age) and adults treated for a spinal deformity between 1 January 2008 and 31 December 2016. Patients were divided into surgical (974 patients) and non-surgical (5,043 patients) cohorts. We documented the number and doses of ionizing radiation imaging events (radiographs, CT scans, or intraoperative fluoroscopy) for each patient. All the doses for plain radiographs, CT scans, and intraoperative
Aims. Intraoperative 3D navigation (ION) allows high accuracy to be achieved in spinal surgery, but poor workflow has prevented its widespread uptake. The technical demands on ION when used in patients with adolescent idiopathic scoliosis (AIS) are higher than for other more established indications. Lean principles have been applied to industry and to health care with good effects. While ensuring optimal accuracy of instrumentation and safety, the implementation of ION and its associated productivity was evaluated in this study for AIS surgery in order to enhance the workflow of this technique. The aim was to optimize the use of ION by the application of lean principles in AIS surgery. Methods. A total of 20 consecutive patients with AIS were treated with ION corrective spinal surgery. Both qualitative and quantitative analysis was performed with real-time modifications. Operating time, scan time, dose length product (measure of CT radiation exposure), use of
Introduction/Aim. Intra-operative localisation of thoracic spine levels can be difficult due to anatomical constraints such as scapular shadow, patient's size and poor bone quality. This is particularly true in cases of thoracic discectomies in which the vertebral bodies appear normal. We describe a simple and reliable technique to identify the correct thoracic spine level. Methods. After induction of general anaesthesia, the patient is placed prone and the pedicle of interest is identified using
To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression.Aims
Methods
Purpose and background. Recent research has identified possible functional biomarkers in chronic, nonspecific back pain (CNSLBP) based on intervertebral kinematics. Although excessive IV-RoM is no longer regarded as a clear motion abnormality, some studies have found subtle kinematic measures such as mid-range laxity and motion sharing inequality to be greater in CNSLBP patients. We studied a group of such patients who were investigated following failed interventions in terms of these subtle measures. Methods. Thirty-seven patients (mean age 47.5 years SD10.87, F14, M23) with CNSLBP that had recently failed to respond to a range of treatments and 37 healthy controls received passive recumbent lumbar intervertebral flexion assessments following a standardised quantitative
Computer assisted surgery is becoming more prevalent in spinal surgery with most published literature suggesting an improvement in accuracy and reduction in radiation exposure. This has been particularly highlighted in scoliosis surgery with regard to the placement of pedicle screws. Anecdotally this has been challenged with concerns with regard to the steep learning curve using this equipment and the high cost of purchasing said systems. The more traditional technique utilises the surgeon's knowledge of anatomic landmarks and tactile palpation added with
Aim. To identify a means to reduce the duration and radiation dose coupled with fluoroscopic guided nerve root blocks (NRB). Method. Consecutive prospective two cohort comparative study. A similar method performed during CT guided NRBs was employed to guide needle placement for transforaminal nerve root injections with the aid of static MR images and
Introduction. Medical Exposure Directive of the European Commission, 97/43/Euratom recommended setting-up local national diagnostic reference levels (DRLs) for the most common radiological examinations in order to comply with the law and to maintain safe clinical practice. There are no guidelines for spinal diagnostic and therapeutic procedures. The aims of this study were to evaluate local radiation doses & screening times for diagnostic spinal blocks, to look at PACS image intensifier films for diagnostic representation and to assess the accuracy of data in IR(ME) document. Materials and Methods. Between 1/01/2009 and 15/07/2010, all spinal blocks done under care of three spinal surgeons (LB/NC/AAC) were reviewed. Images revisited on PACS for confirmation. We reviewed 229 patients (included single & two levels nerve root blocks, facet joint and lysis blocks). Data were collected with regard to radiation dose, screening times, third-quartile values used to establish DRLs, IR(ME) documentation and PACS
Aims. Magnetically controlled growing rods (MCGRs) allow non-invasive
correction of the spinal deformity in the treatment of early-onset
scoliosis. Conventional growing rod systems (CGRS) need repeated
surgical distractions: these are associated with the effect of the
‘law of diminishing returns’. The primary aim of this study was to quantify this effect in
MCGRs over sequential distractions. . Patients and Methods. A total of 35 patients with a maximum follow-up of 57 months
were included in the study. There were 17 boys and 18 girls with
a mean age of 7.4 years (2 to 14). True Distraction (TD) was determined
by measuring the expansion gap on
Aims. Minimally invasive transforaminal lumbar interbody fusion (MITLIF)
has been well validated in overweight and obese patients who are
consequently subject to a higher radiation exposure. This prospective
multicentre study aimed to investigate the efficacy of a novel lumbar
localisation system for MITLIF in overweight patients. Patients and Methods. The initial study group consisted of 175 patients. After excluding
49 patients for various reasons, 126 patients were divided into
two groups. Those in Group A were treated using the localisation
system while those in Group B were treated by conventional means.
The primary outcomes were the effective radiation dosage to the
surgeon and the exposure time. Results. There were 62 patients in Group A and 64 in Group B. The mean
effective dosage was 0.0217 mSv (standard deviation (. sd. ) 0.0079)
in Group A and 0.0383 mSv (. sd. 0.0104) in Group B (p <
0.001).
The mean
Purpose and Background:. To compare static and dynamic lumbar intervertebral ranges of motion (IV-RoM) in patients with chronic, nonspecific low back pain with upper and lower cut off values derived from healthy controls when variability and measurement errors were reduced. Measurements from functional radiographs suffer from high variability and measurement errors, making cut off values for excessive or insufficient motion problematical. This study compared maximum lumbar IV-RoM and maximum IV-RoM at any point in continuous motion sequences in patients with chronic, non-specific back pain with upper and lower cut off values for L2 to L5 from matched controls using quantitative
The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease. A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed.Aims
Methods
Background and purpose. Investigating inter-vertebral biomechanics in vivo using end-of-range imaging is difficult due to high intra subject variation, measurement errors and insufficient data. Quantitative
The aim of this study was to investigate the efficacy of coccygectomy in patients with persistent coccydynia and coccygeal instability. The Danish National Spine Registry, DaneSpine, was used to identify 134 consecutive patients who underwent surgery, performed by a single surgeon between 2011 and 2019. Routine demographic data, surgical variables, and patient-reported outcomes, including a visual analogue scale (VAS) (0 to 100) for pain, Oswestry Disability Index (ODI), EuroQol five-dimension questionnaire (EQ-5D), and the Physical Component Score (PCS) and Mental Component Score (MCS) of the 36-Item Short-Form Health Survey questionnaire (SF-36) were collected at baseline and one-year postoperatively.Aims
Methods