Advertisement for orthosearch.org.uk
Results 1 - 20 of 47
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 17 - 17
10 Feb 2023
Weber A Dares M
Full Access

Percutaneous flexor tenotomy involves cutting the flexor digitorum tendons to correct claw toe deformity to treat apical pressure areas and prevent subsequent infection in patients with peripheral neuropathy. Performing this under ultrasound guidance provides reassurance of complete release of the tendon and increases procedural safety. This study is a retrospective case series evaluating the effectiveness, safety, and patient satisfaction of performing percutaneous ultrasound-guided flexor tenotomy in an outpatient setting. People with loss of protective sensation, a digital flexion deformity, and an apical toe ulcer or pre-ulcerative lesion who presented to our institution between December 2019 and June 2022 were included in this study. Participants were followed-up at a minimum of 3 months. Time to ulcer healing, re-ulceration rate, patient satisfaction, and complications were recorded. An Australian cost analysis was performed comparing this procedure performed in rooms versus theatres. There were 28 ulcers and 41 pre-ulcerative lesions. A total of 69 tenotomy procedures were performed on 38 patients across 52 episodes of care. The mean time to ulcer healing was 22.5 +/- 6.4 days. There were 2 cases of re-ulceration. 1 patient sustained a transfer lesion. There were four toes that went onto require amputation, all in the setting of pre-existing osteomyelitis. 94% of patients strongly agreed that they were satisfied with the outcome of the procedure. Costs saved were estimated to be $1426. Flexor tenotomy is a minimally invasive procedure that can be performed in the outpatient setting, and therefore without delay to treatment, reducing risk of ulcer progression and need for subsequent amputation. This is the first study to report on flexor tenotomy under ultrasound-guidance. Ultrasound-guided percutaneous flexor tenotomy is safe and effective, with high patient satisfaction and low recurrence rates. This performance in the outpatient setting ensures significant time and cost savings for both the practitioner and patient


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 27 - 27
23 Feb 2023
Hassanein M Hassanein A Hassanein M Khaled M Oyoun NA
Full Access

This study was performed at Assiut University, Assiut, Egypt. Anterior distal femoral hemiepiphysiodesis (ADFH) using intra-articular plates for the correction of paediatric fixed knee flexion deformities (FKFD) has two main documented complications: postoperative knee pain and implant loosening. This study describes a biomechanical analysis and a preliminary report of a novel extra-articular technique for ADFH. Sixteen femoral sawbones were osteotomized at the level of the distal femoral physis and fixed by rail frames to allow linear distraction simulating longitudinal growth. Each sawbone was tested twice: first using the conventional technique with medial and lateral parapatellar eight plates (group A) and then with the plates inserted in the proposed novel location at the most anterior part of the medial and lateral surfaces of the femoral condyles with screws in the coronal plane (group B). Gradual distraction was performed, and the resulting angular correction was measured. Strain gauges were attached to the plates, and the amount of strain (and equivalent stress) over the plates was recorded. This technique was then applied to 9 paediatric FKFDs of different aetiologies. The preoperative FKFD and the amount of subsequent angular correction were measured. The amount of angular correction was higher in group B at 5, 10-, and 15-mm of distraction (p<0.001). The maximum and overall stresses measured throughout the distraction process were higher in group A (p<0.001). The mean FKFD improved from 24 ± 9° preoperatively to 9 ± 7° after 10 ± 3° months (p<0.001). The correction rate was 1.81 ± 0.65° per month. During ADFH, the fixation of the eight plates in the coronal plane at the anterior part of the femoral condyles may produce greater correction and lower stresses over the implants as compared to the conventional technique. Preliminary results from our initial series seem to support the effectiveness of this technique with respect to the degree of angular correction achieved


Introduction. At Sheffield Children's Hospital, treatment of leg length discrepancy is a common procedure. Historically, this has been done with external fixators. With the development in intramedullary technology, internal nails have become the preferred modality for long bone lengthening in the adolescent population. However, it is important to review whether this technology practically reduces the known challenges seen and if it brings any new issues. Therefore, the aim of this review is to retrospectively evaluate the therapeutic challenges of 16 fit-bone intramedullary femoral lengthening's at Sheffield Children's Hospital between 2021–2022. Materials & Methods. The international classification of function (ICF) framework was used to differentiate outcomes. The patient's therapy notes were retrospectively reviewed for themes around structural, activity and participation limitation. The findings were grouped for analysis and the main themes presented. Results. There were 8 males, mean age 17.4 years (range 17–18) and 8 females, mean age 15.9 years (range 14–18). 5 right and 11 left femurs were lengthened. Underlying pathology varied amongst the 16 patients. All patients went into a hinged knee brace post operatively. Structural limitations included: pain, fixed flexion deformity of the knee, loss of knee flexion, quadriceps muscle lag, muscle spasms and gluteal weakness. The primary activity limitation was reduced weight bearing with altered gait pattern. Participation limitations included reduced school attendance and involvement in activities with peers. Access to Physiotherapy from local services varied dramatically. Five of the cohort have completed treatment. Conclusions. Anecdotally, intramedullary femoral lengthening nails have perceived benefits for families compared to external fixators in the adolescent population. However, there remain musculoskeletal and psychosocial outcomes requiring therapeutic management throughout the lengthening process and beyond. Therefore, quantifying these outcomes is essential for measuring the impact on each patient for comparison. To interpret these themes, we need to evaluate the outcomes objectively, this was not done consistently in this review. Future research should look at outcome measures that are sensitive to all aspects of the ICF. With an aim of improving the therapeutic treatment provided and the overall outcome for the children treated


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 82 - 82
1 Apr 2019
Mullaji A Shetty G
Full Access

Aims. The aims of this prospective study were to determine the effect of osteophyte excision on deformity correction and soft- tissue gap balance in varus knees undergoing total knee arthroplasty (TKA). Patients and Methods. Limb deformity in coronal (varus) and sagittal (flexion) planes, medial and lateral gap distances in maximum knee extension and 90° knee flexion and maximum knee flexion were recorded before and after excision of medial femoral and tibial osteophytes using computer navigation in 164 patients who underwent 221 computer-assisted, cemented, cruciate- substituting TKAs. Results. Mean varus and flexion deformities of 4.5°±3° (0.5° to 30° varus) and 4.9°±5.9° (−15° hyperextension to 30° flexion) reduced significantly (p<0.0001) to mean varus deformity of 1°±2.3° and mean flexion deformity of 2.7°±4.2° after excision of medial femoral and tibial osteophytes. The mean medio-lateral (ML) soft-tissue gap difference in maximum knee extension and 90°knee flexion of 2.7±3.6mm and 0.7±2.6mm reduced significantly (p<0.0001) to mean ML soft-tissue gap difference of 0.7±2.5mm in maximum knee extension and 0.1±1.9mm in 90°knee flexion. The mean maximum knee flexion (122.8°±8.4°) increased significantly to mean maximum knee flexion of (125°±8°). Conclusion. Excision of medial femoral and tibial osteophytes during TKA in varus knees significantly improves varus and flexion deformities, mediolateral soft-tissue gap imbalance in maximum extension and in 90°knee flexion and maximum knee flexion. Clinical Relevance. Excision of medial femoral and tibial osteophytes can be a useful, initial step towards achieving deformity correction and gap balance without having to resort to soft-tissue release during TKA in varus knees


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 53 - 53
1 Jun 2012
Eid M Behairy WS El-Sebai MA
Full Access

The purpose of this study is to investigate the feasibility of surgical correction of moderate flexion deformity during total knee arthroplasty by recreating the posterior condylar recess following certain sequence of surgical principles without extra-resection of bone from the distal femur or proximal tibia. The hypothesized surgical protocol was applied in 52 consecutive primary TKAs with moderate flexion deformity. Preoperative and residual postoperative flexion deformity was recorded. Intraoperatively, extension and flexion gap widths were recorded before and after surgical correction. Fixed flexion deformity has improved from a preoperative mean value of 24.8±6.4 to a postoperative residual value of 3.2±1.8 (p value < 0.001). Extension and flexion gap widths have increased by a mean value of 3.8±0.4 mm and 4.1±0.7 mm respectively (p value < 0.005). There was no significant difference between the changes in the extension and flexion gaps. The original flexion/extension gap width mismatch (3.2±0.5mm) was compensated for by an upsized femoral component. The statistically significant changes has demonstrated the efficiency of the hypothesized surgical protocol for management of flexion deformity during TKA added to the benefits of bone conservation for future revision surgery, preservation of surface area for collateral attachments, and establishment of the joint line at the correct level


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 29 - 29
1 May 2021
Rouse B Giles S Fernandes J
Full Access

Introduction. We have previously published limb lengthening using external fixation in pathological bone diseases. We would like to report a case series of femoral lengthening using the PRECICE system in a similar pathological group especially looking at it's feasibility and complications. Materials and Methods. This is a case series of four patients, two patients with osteogenesis imperfecta and two with Ollier's disease, who underwent femoral lengthening via distraction osteogenesis using the PRECICE intramedullary nail system. It was a retrospective study from a prospective database from clinical records and radiographs. Results. The mean age at the time of surgery was 15.5 years, the mean preoperative leg length discrepancy was 30mm, and the mean distraction distance achieved was 28.75mm. Since these patients were of shorter heigh, limb lengthening was considered. All 4 patients had successful insertion of the nail. The outcomes noted from the 4 patients are collated, with several complications occurring including delayed femoral union, fixed flexion deformity of the hip, persisting pain and quadriceps weakness. Those with Ollier's disease underwent an increased rate of distraction to prevent premature healing. The implications of long-term bisphosphonate therapy in OI are discussed with regards to the risk of delayed femoral union and intra-operative fracture. Conclusions. Intramedullary femoral lengthening in pathological bone disease is possible, but the surgeon needs to give attention to certain details. The regenerate formation is based on the background pathology irrespective of the hardware used. There is much more compliance with the nail technique


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 115 - 115
1 Mar 2013
Liu D
Full Access

Fixed flexion contracture is often present in association with osteoarthritis of the knee and correction is one of the key surgical goals in total knee replacement. Surgical strategies to correct flexion contracture include removal of posterior osteophytes, posterior capsular release and additional distal femoral bone resection. Traditional teaching indicates 2 mm of additional distal femoral bone resection will correct 10 degrees of flexion deformity. However some studies have questioned this figure and removing excessive distal femoral bone results in elevation of the joint line, potentially causing patella baja, alteration in collateral ligament tension through the flexion arc and mid-flexion instability. The aim of our study is to determine the relationship between distal bone resection of the femur and passive knee extension in total knee arthroplasty. A cohort of 50 patients, undergoing total knee arthroplasty, was recruited. Following complete femoral and tibial bone preparation, to simulate the effect of distal femoral bone resection, augments of 2 mm increments (2 mm, 4 mm, 6 mm, 8 mm) were placed onto the trial femoral component. The degree of flexion contracture with each augment was measured using computer navigation. The results showed a 2 mm augment produced an average of 3.37 degrees of flexion deformity. A 4 mm augment led to an average of 6.68 degrees fixed flexion, whilst a 6 mm augment produced 11.38 degrees. To correct 10 degrees flexion deformity, an additional 6 mm distal femoral bone resection is required. In conclusion, additional distal femoral bone resection may not be as an effective strategy as previously believed to correct fixed flexion deformity in total knee arthroplasty


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 53 - 53
1 May 2019
Lombardi A
Full Access

The etiology of the flexion contracture is related to recurrent effusions present in a knee with end-stage degenerative joint disease secondary to the associated inflammatory process. These recurrent effusions cause increased pressure in the knee causing pain and discomfort. Patients will always seek a position of comfort, which is slight flexion. Flexion decreases the painful stimulus by reducing pressure in the knee and relaxing the posterior capsule. Unfortunately, this self-perpetuating process leads to a greater degree of contracture as the disease progresses. Furthermore, patients rarely maintain the knee in full extension. Even during the gait cycle the knee is slightly flexed. As their disease progresses, patients limit their ambulation and are more frequently in a seated position. Patients often report sleeping with a pillow under their knee or in the fetal position. All of these activities increase flexion contracture deformity. Patients with excessive deformity >40 degrees should be counseled regarding procedural complexity and that increasing constraint may be required. Patients are seen preoperatively by a physical therapist and given a pre-arthroplasty conditioning program. Patients with excessive flexion contracture are specifically instructed on stretching techniques, as well as quadriceps rehabilitation exercises. The focus in the postoperative physiotherapy rehabilitation program continues toward the goal of full extension. Patients are instructed in appropriate stretching regimes. Patients are immobilised for the first 24 hours in full extension with plaster splints, such as with a modified Robert Jones dressing. This dressing is removed on postoperative day one. The patient is then placed in a knee immobiliser and instructed to wear it at bed rest, during ambulation and in the evening, only removing for ROM exercises. In cases of severe flexion deformity >30 degrees, patients are maintained in full extension for 3–4 weeks until ROM is begun. Patients are encouraged to use a knee immobiliser for at least the first 6 weeks postoperatively. Treating patients with flexion contracture involves a combination of bone resection and soft tissue balance. One must make every effort to preserve both the femoral and tibial joint line. In flexion contracture the common error is to begin by resecting additional distal femur, which may result in joint line elevation and mid-flexion instability. The distal femoral resection should remove that amount of bone being replaced with metal. Attention should be directed at careful and meticulous balance of the soft tissues and release of the contracted posterior capsule with re-establishment of the posterior recess, which will correct the majority of flexion contractures. Inability to achieve ROM after TKA represents a frustrating complication for both patient and surgeon. Non-operative treatments for the stiff TKA include shoe lift in contralateral limb, stationery bicycle with elevated seat position, extension bracing, topical application of hand-held instruments to areas of soft tissue-dysfunction by a trained physical therapist over several outpatient sessions, and use of a low load stretch device. Manipulation under anesthesia is indicated in patients after TKA having less than 90 degrees ROM after 6 weeks, with no progression or regression in ROM. Other operative treatments range from a downsizing exchange of the polyethylene bearing to revision with a constrained device and low-dose irradiation in cases of severe arthrofibrosis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 49 - 49
1 Mar 2012
Ghosh S Sayana M Ahmed E Jones CW
Full Access

Introduction. We propose that Total Hip Replacement with correction of fixed flexion deformity of the hip and exaggerated lumbar lordosis will result in relief of symptoms from spinal stenosis, possibly avoiding a spinal surgery. A sequence of patients with this dual pathology has been assessed to examine this and suggest a possible management algorithm. Materials and methods. A retrospective study of 19 patients who presented with dual pathology was performed and the patients were assessed with regards to pre and post-operative symptoms, walking distance, and neurological status. Results. There were 17 patients with improvement in the spinal stenotic symptoms following hip replacement to an extent that none required spinal surgery. There were two patients who had spinal surgery after THR, at varying lengths following hip replacements as their spinal stenotic symptoms worsened over time, and had lateral spinal stenosis on MRI. Discussion. In advanced hip osteoarthritis, a fixed flexion deformity may develop at the hip leading to an exaggerated lumbar lordosis in erect posture. In the presence of co-existing spinal stenosis, the exaggerated lumbar lordosis may worsen the spinal stenotic symptoms while standing and walking. Cadaveric & Radiological studies have shown that canal narrowing occurs with increased lordosis/ extension in the lumbar spine. Our findings suggest that when central lumbar spinal stenosis coexists with bilateral hip arthritis and FFD at the hip, THR should be offered first. Successful hip surgery for arthritis correcting significant fixed flexion deformity would lessen the lumbar lordosis, thus correcting the excessive pathological narrowing. If a patient is fit enough, simultaneous bilateral THR via an anterior type of approach makes surgical correction of FFD easier. Although it has been suggested in the literature that patients with spinal stenosis have a increased risk of neurological impairment following THR, we did not find any clear association


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 88 - 88
1 May 2014
Su E
Full Access

Flexion contractures are a common finding in an end-stage arthritic knee, occurring in up to 60% of patients undergoing total knee arthroplasty. Fixed flexion deformities may result from posterior capsular scarring, osteophyte formation, and bony impingement. It is essential to correct this deformity at the time of total knee arthroplasty, as a residual flexion contracture will result in joint overload and abnormal gait mechanics. This may translate to a slower walking velocity, shorter stride length, and pain. This presentation will discuss a systematic way of dealing with flexion contractures to ensure that the total knee arthroplasty will achieve full extension. The surgical technique for treating fixed flexion deformity about the knee includes release of the posterior cruciate ligament, posterior capsular release, adequate distal femoral bone resection, and removal of osteophytes. Postoperatively, attention must be divided between obtaining maximal flexion and full extension. Should a flexion contracture be noted upon the postoperative visit, additional measures should be taken to address it


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 94 - 94
1 May 2013
Su E
Full Access

Flexion contractures are a common finding in an end-stage arthritic knee, occurring in up to 60% of patients undergoing total knee arthroplasty. Fixed flexion deformities may result from posterior capsular scarring, osteophyte formation, and bony impingement. It is essential to correct this deformity at the time of total knee arthroplasty, as a residual flexion contracture will result in joint overload and abnormal gait mechanics. This may translate to a slower walking velocity, shorter stride length, and pain. This presentation will discuss a systematic way of dealing with flexion contractures to ensure that the total knee arthroplasty will achieve full extension. The surgical technique for treating fixed flexion deformity about the knee includes release of the posterior cruciate ligament, posterior capsular release, adequate distal femoral bone resection, and removal of osteophytes. Post-operatively, attention must be divided between obtaining maximal flexion and full extension. Should a flexion contracture be noted upon the post-operative visit, additional measures should be taken to address it


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 21 - 21
1 Jan 2016
Hafez M
Full Access

Introduction. Total knee arthroplasty is the standard treatment for advanced knee osteoarthritis. Patient-specific instrument (PSI)has been reported by several authors using different techniques produced by implant companies. The implant manufacturers produce PSI exclusively for their own knee implants and for easy straightforward cases. However, the PSI has become very expensive and unusable as a universal or an open platform. In addition, planning the implant is done by technicians and not by surgeons and needs long waiting time before surgery (6 weeks). Methods. We proposed a new technique which is a device and method for preparing a knee joint in a patient undergoing TKA surgery of any knee implant (prosthesis). The device is patient specific, based on a method comprised of image-based 3D preoperative planning (CT, MRI or computed X-ray) to design the templates (PSI) that are used to perform the knee surgery by converting them to physical templates using computer-aided manufacturing such as computer numerical control (CNC) or additive-manufacturing technologies. The device and method are used for preparing a knee joint in a universal and open-platform fashion for any currently available knee implant. Results. All patient-specific implants and any knee implant could be produced. The technique was applied on NExGen implant (Zimmer)on 21 patients, PFC implant (Depuy, J & J) on 5 patients, Scorpio NRG implant (Stryker) on 24 patients and SLK Evo implant (Implant International) on 81 patients. The >15 degrees varus gave a mean of 10.44 degrees in 56.67% of cases and the <15 degrees varus gave a mean of 24.04 degrees in 43.33% of cases. The total varus of 5–30 degrees gave a mean of 16.33 degrees in 90.9% of cases and the total valgus of 20–40 gave a mean of 25 degrees in 9.1% of cases. The fixed flexion deformity of < 20 degrees gave a mean of 9.4 degrees in 75.3% of cases while the fixed flexion deformity of >20 gave a mean of 31.87 degrees in 24.7% of cases. Discussion. The system is based on CT images, generic data of implant sizes, average bone geometry and standard TKA parameters for bone cutting, mechanical axis and rotation (e.g., zero-degree coronal cut, adjustable posterior slope, femoral flexion, epicondylar axis, no notching or overhang, etc.). The method of planning and completing virtual surgery of TKA includes several steps based on 3D reconstruction and segmentation of computed tomography (CT) or MRI scan data. The universal device and method are suitable to be used for any commercially and currently available knee implant. They are used for all on-shelf implants and all patient-specific instruments. The device is specifically designed for TKA and the planning is based on the 3D files of a universal TKA prosthesis. There are four standard sizes of the universal TKA prosthesis which were built depending on the average bone geometry. These 4 sizes are 55, 60, 65 and 70 mm. These sizes are consistent with the six most common implants available today: NexGen Zimmer, PFC Depuy, Sigma Knee, Triathlon Stryker, Vanguard Biomet, and Smith & Nephew Proflex. However, for extreme cases, one size above or below the maximum and minimum range can be used. The device has 2 parts: a femoral part and a tibial part, both of which are independent of any commercially available knee implant


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 293 - 302
1 Mar 2024
Vogt B Lueckingsmeier M Gosheger G Laufer A Toporowski G Antfang C Roedl R Frommer A

Aims

As an alternative to external fixators, intramedullary lengthening nails (ILNs) can be employed for distraction osteogenesis. While previous studies have demonstrated that typical complications of external devices, such as soft-tissue tethering, and pin site infection can be avoided with ILNs, there is a lack of studies that exclusively investigated tibial distraction osteogenesis with motorized ILNs inserted via an antegrade approach.

Methods

A total of 58 patients (median age 17 years (interquartile range (IQR) 15 to 21)) treated by unilateral tibial distraction osteogenesis for a median leg length discrepancy of 41 mm (IQR 34 to 53), and nine patients with disproportionate short stature treated by bilateral simultaneous tibial distraction osteogenesis, with magnetically controlled motorized ILNs inserted via an antegrade approach, were retrospectively analyzed. The median follow-up was 37 months (IQR 30 to 51). Outcome measurements were accuracy, precision, reliability, bone healing, complications, and patient-reported outcome assessed by the Limb Deformity-Scoliosis Research Society Score (LD-SRS-30).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 22 - 22
1 Jan 2016
Song E Seon J Seol J
Full Access

Background. Stability of total knee arthroplasty (TKA) is dependent on correct and precise rotation of the femoral component. Multiple differing surgical techniques are currently utilized to perform total knee arthroplasty. Accurate implant position have been cited as the most important factors of successful TKA. There are two techniques of achieving soft gap balancing in TKA; a measured resection technique and a balanced gap technique. Debate still exists on the choice of surgical technique to achieve the optimal soft tissue balance with opinions divided between the measured resection technique and the gap balance technique. In the measured resection technique, the bone resection depends on size of the prosthesis and is referenced to fixed anatomical landmarks. This technique however may have accompanying problems in imbalanced patients. Prediction of gap balancing technique, tries to overcome these fallacies. Our aim in this study was twofold: 1) To describe our methodology of ROBOTIC TKA using prediction of gap balancing technique. 2) To analyze the clinico-radiological outcome our technique comparison of meseaured resection ROBOTIC TKA after 1year. Methods. Patients that underwent primary TKA using a robotic system were included for this study. Only patients with a diagnosis of primary degenerative osteoarthritis with varus deformity and flexion deformity of were included in this study. Patients with valgus deformity, secondary arthritis, inflammatory arthritis, and severe varus/flexion deformity were excluded. Three hundred ten patients (319 knees) who underwent ROBOTIC TKA using measured resection technique from 2004 – 2009. Two hundred twenty (212 knees) who underwent ROBOTIC TKA using prediction of gap balancing technique from 2010 – 2012. Clinical outcomes including KS and WOMAC scores, and ranges of motion and radiological outcomes including mechanical axis, prosthesis alignments, flexion varus/valgus stabilities were compared after 1year. Results. Leg mechanical axes were significantly different at follow-up 1year versus preoperative values, the mean axes in the Robotic-TKA with measured resection technique and Robotic-TKA with prediction of gap balancing technique improved from 9.6±5.0° of varus to 0.5±1.9° of varus, and from 10.6±5.5° to 0.4±1.3° of varus (p<0.001), respectively. However, no significant intergroup differences were found between mechanical axis or coronal alignments of femoral or tibial prostheses (pï¼ï¿½0.05). Mean varus laxities at 90° of knee flexion in measured resection and gap prediction technique group were 6.4° and 5.3°, respectively, and valgus laxities were 6.2 and 5.2 degrees, respectively, with statistical significance (p=0.045 and 0.032, respectively). KS knee and function scores and WOMAC scores were significantly improved at follow-up 1year (pï¼ï¿½0.05). However, no significant difference was found between the Robotic-TKA with measured resection technique and Robotic-TKA with prediction of gap balancing technique for any clinical outcome parameter at follow-up 1year (pï¼ï¿½0.05). Conclusions. Robotic assisted TKA using measured resection or gap prediction technique provide adequate and practically identical levels of flexion stability at 90° of knee flexion with accurate leg and prosthesis alignment. But, Robotic TKA using measured resection technique have less than flexion stability compared with gap prediction technique with statistical significance after follow-up 1year


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_7 | Pages 7 - 7
1 May 2018
Rodger M Davis N Griffiths-Jones W Lee A
Full Access

A patient in his thirties developed synovitis with grade 4 chondrolysis and a stiff knee with a fixed flexion deformity between three and six years following PLC and PCL reconstruction using LARS (Ligament Augmentation and Reconstruction System, Corin). There was histologic evidence of foreign body reaction, the knee was painful, swollen and stiff. We did not use any further LARS ligaments for soft tissue reconstructions of the kneein our practice. We commenced a recall programme for all 83 patients patients who underwent a soft tissue knee reconstruction using LARS. Of those contacted, 41 replied (49%) and 16 patients had symptoms (19%) and were investigated further with XRay, MRI and arthroscopy as indicated. We discovered a total of five patients had histologically proven synovitis with foreign body reactions (6%), three of whom had life-changing symptomatic pain, swelling and stiffness with degenerate changes (3.6%). These patients had undergone various reconstructions, including a) PLC only, b) ACL and PCL, c) PCL and PLC and d) ACL, PCL and PLC. A further single case of massive bone cyst formation was noted, following PCL reconstruction using LARS (1.2%)


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 98 - 98
1 Feb 2012
Kamineni S Lee R Sharma A Ankem H
Full Access

Radial head fractures with fragment displacement should be reduced and fixed, when classified as Mason II type injuries. We describe a method of arthroscopic fixation which is performed as a day case trauma surgery, and compare the results with a more traditional fixation approach, in a case controlled manner. We prospectively reviewed six Mason II radial head fractures which were treated using an arthroscopic reduction and fixation technique. The technique allows the fracture to be mobilised, reduced, and anatomically fixed using headless screws. All arthroscopic surgeries were conducted as day-cases. We retrospectively collected age and sex matched cases of open reduction and fixation of Mason II fractures using headless screws. The arthroscopic cases required less analgesia, shorter hospital admissions, and had fewer complications. The averaged final range of follow-up, at 1 year post-operation was 15 to 140 degrees in the arthroscopic group and 35 to 120 degrees in the open group. The Mayo Elbow Performance Score was 95/100 and 90/100 respectively. No acute complications were noted in the arthroscopic group, and a radial nerve neuropraxia [n=1], superficial wound infection [n=1], and loose screw [n=1]. Two patients of the arthroscopic group required secondary motion gaining operations [n=1 arthroscopic anterior capsulectomy for a fixed flexion contracture of 35 degrees, and n=1 loss of supination requiring and arthroscopic radial scar excision]. Three patients in the open group required secondary surgery [n=2 arthroscopic anterior capsulectomy for fixed flexion deformities, and n=1 arthroscopic anterior capsulectomy for fixed flexion deformities, and n=1 arthroscopic radial head excision for prominent screws, loss of forearm rotation, and radiocapitellar arthrosis pain]. The technique of arthroscopic fixation of Mason II radial head fractures appears to be valid, with respect to anatomical restoration of the fracture, minimal hospital admission, reduction in analgesia requirement, fewer complications, and a decreased need for secondary surgery


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 326 - 326
1 Mar 2013
Sharma RK
Full Access

Post total knee arthroplasty, mid flexion instability can be described as a stable knee in full extension but as soon as knee starts bending instability is noticed and the knee becomes stable again at 90° of flexion. Mid flexion instability should not be confused with the true flexion instability. Such instability may be not be recognized in most cases because of subtleness of the nature of complaints of the patient. Soft tissue tension should be equal not only medio-laterally but also in antero-posterior alignment. The knee needs to be balanced in the complete arc of motion. To understand this it should be remembered that main stabilizer of the knee in extension is the posterior capsule and in flexion are the collateral ligaments. Main factors contributing to Mid Flexion instability are:. 1. Over release of anterior part of Medial Collateral Ligament (which is a stabilizer from 30° to 60° of motion). 2. Femoral-tibial articular geometry - Malposition of the implant in relation to the epicondyles so that collateral ligaments won't be isometric. 3. Over release of anterior part of Medial Collateral Ligament (which is a stabilizer between 30° to 60° of motion. 4. Tibial post-femoral box geometry. In a fixed flexion deformity, suitable posterior release should be matched with the collateral frame before taking extra-distal femoral cuts. Every 2 mm of additional distal femoral cut causes mid flexion instability of 2 to 3° as was seen in a cadaveric study. It is important to understand the interplay between posterior structures and collateral structures. Normally collateral structures have some laxity at 5° flexion but at 0° knees are locked mainly because of the tension of the posterior structures. We have classified mid flexion instability in three types:. Type I: Over-released MCL and Normalised Posterior capsule. Type II: MCL Normal, but Posterior capsule is tight / insufficiently released and to balance this disparity distal femur cut is increased. Type III: A Combination of above two conditions with MCL and Postero-medial Capsule both having laxity e.g. in a FFD with varus. It is a retro-prospective study. 411 patients with 600 knees were subjected to the study to assess mid-flexion instability in patients with primary Total Knee Arthroplasty. Follow was over a period of 5 years. Of the 600 TKA 60 were LCS prosthesis, 90 were PFC RP, 200 were PFC sigma and rest 250 were Stryker Scorpio. All patients were assessed by clinical and radiological evaluation. X-rays were taken in 0°, 30°, 60°. Arthrograms were also done to assess alignment of the joints. Fluroscopic studies were done in select few cases. Knee society score was noted for each patient and compared with pre-operative data. Mid Flexion instability in a newer concept, the causes of which and further management protocols needs to be worked out. Mid Flexion instability is a failure to release the tight posterior capsule in a fixed flexion deformity. Over release of anterior MCL will result in mid flexion instability but in this situation knee may be unstable even at 90°


Study. This is a prospective double blind, placebo controlled trial. Collagenase Clostridium Histolyticum was effective and well tolerated used in well palpable cords of Dupuytren's Contracture. Concurrent fingers treatment with early complications have been reported. Patients reported outcome measures have been obtained. Materials & Method. 143 fingers were treated in 125 patients. Deformity of more than 30° at metacarpo phalangeal joints and more than 20° at proximal interphalangeal joints with well palpable cord were selected in this study. Finger straightening procedure was undertaken at 24–72 hours post injection. Prospectively evaluated for early complications, extent of correction, residual deformity and recurrence rate at 3 years and 6 months follow up. Concurrent fingers were treated without serious side effects. Results. Full correction was achieved in 130 fingers (91%). Residual flexion deformity noted in mainly in PIPJ with flexion 80° or more. At four years follow up, the recurrence rate was noted in Metacarpophalangeal Joints in 4(3%)fingers and Proximal Inter Phalangeal Joints in 12(9%) fingers. Patient reported outcome measures have been collected and expressed high degree of satisfaction. Conclusion. Most local complications resolved within two weeks of the injection. Isolated MPJ deformity is more likely to be corrected fully. Isolated Proximal Interphalangeal Joints and combined Proximal Interphalangeal Joints and Metacarpo Phalangeal Joints contractures are mostly end up in residual flexion. Concurrent finger treatment was uneventful


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 79 - 79
1 Jun 2018
Mullaji A
Full Access

Since 2005, the author has performed nearly 1000 Oxford medial unicompartmental arthroplasties (UKA) using a mobile bearing. The indications are 1) Isolated medial compartment osteoarthritis with ‘bone-on-bone’ contact, which has failed prior conservative treatment, 2) Medial femoral condyle avascular necrosis or spontaneous osteonecrosis, which has failed prior conservative treatment. Patients are recommended for UKA only if the following anatomic requirements are met: 1) Intact ACL, 2) Full thickness articular cartilage wear limited to the anterior half of the medial tibial plateau, 3) Unaffected lateral compartment cartilage, 4) Unaffected patellar cartilage on the lateral facet, 5) Less than 10 degrees of flexion deformity, 6) Over 100 degrees of knee flexion, and 7) Varus deformity not exceeding 15 degrees. Exclusion criteria for surgery are BMI of more than 30, prior high tibial osteotomy, and inflammatory arthritis. All cases were performed with a tourniquet inflated using a minimally-invasive incision with a quadriceps-sparing approach. Both femoral and tibial components were cemented. Most patients were discharged home the next morning; bilaterals usually stayed a day longer. We have previously described our results and the factors determining alignment. In a more recent study, we have compared the coronal post-operative limb alignment and knee joint line obliquity after medial UKA with a clinically and radiologically (less than Grade 2 medial OA) normal contralateral lower limb. In our series, we have had 1 revision for aseptic loosening of both components, conversion to TKRs in a patient with bilateral UKAs who developed rheumatoid arthritis 3 years later, and 9 meniscal dislocations. There have been no cases of wound infections and thromboembolism. We have reviewed our patients with a minimum 10-year follow-up which will be presented. The vast majority of our patients have been generally very satisfied with the results. Our study shows that most patients (who have no disease in the contralateral knee) regain their ‘natural’ alignment and joint line obliquity comparable to their contralateral limb. Over the past few years our percentage of UKAs has been steadily rising to about a third of our knee cases. UKA serves as a definitive procedure in the elderly. We see it as a suitable procedure in middle-aged patients who want an operation that provides a quick recovery, full function and range of motion, and near-normal kinematics, with the understanding that they have a small chance of conversion to a total knee arthroplasty in the future


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 72 - 72
1 Dec 2016
Cobb J
Full Access

Lateral meniscal failure and secondary valgus with lateral compartment arthrosis is quite common in the developed world. The varus knee is the common phenotype of the ‘jock’ of both genders, while the valgus knee is a common consequence of lateral meniscal tear, skiing or ‘catwalk’ life. Occurring more commonly in ‘flamingo’ phenotypes, lateral meniscal failure can be disabling, entirely preventing high heels being worn for instance. Indications. Lateral UKA is indicated for most valgus knees, and is substantially safer than TKA. ACL integrity is not essential in older people, as the patello-femoral mechanism is in line with the lateral compartment. Severe valgus with substantial bone loss is not a contraindication, if the deformity is simply angular. As long as there is not marked subluxation, fixed flexion deformity invariably corrects after notch osteophyte removal from femur and tibia. Combinations. Lateral UKA can be combined safely with PFJA: performed through a lateral approach, this is a safe and conservative procedure. ACL integrity is not essential – reconstruction can be undertaken simultaneously, if necessary. Combining lateral UKA with medial UKA is only rarely needed, and sometimes needs ACL reconstruction too. Adding a medial UKA in under 5 years usually results from overcorrection of the valgus. Mid Term Results, at a median of 7 years postop: Between 2005 to 2009, 64 knees in 58 patients had a lateral UKA using a device designed for the lateral compartment. This included 41 females and 17 males with a mean age of 71 years at the time of surgery (range 44–92). Thirty-nine patients underwent surgery on the right knee and 6 underwent bilateral procedures, of which four were performed under a single anesthetic. Primary lateral compartment osteoarthritis was the primary diagnosis in 63 cases with secondary osteoarthritis to a lateral tibial plateau fracture the indication in one patient. At 119 months follow up, the predicted cumulative survival was 0.97. With re-operation as an endpoint, 11% of patients within the study had undergone re-operation with a predicted cumulative survival of 0.81 at 119 months. This compares well with historic fixed bearing series. Preoperative OKS scores were available for 50 knees, scores were available for 63 knees at 9–48 months and 52 knees at 61–119 months post index operation. There was a significant improvement in the OKS between the preoperative scores (median 26 range 9–36) and early postoperative time points of 9–48 months, (median 42 range 23–48) (p<0.001). At the later postoperative time point of 61–119 months the score had been maintained (42 range 10–48). Conclusion. Lateral UKA is a small and safe procedure, with clinical outcomes that are equivalent to a medial UKA and are maintained at a median of 7 years postoperatively