Advertisement for orthosearch.org.uk
Results 1 - 20 of 433
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 87 - 93
1 Jun 2021
Chalmers BP Elmasry SS Kahlenberg CA Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK Cross MB

Aims. Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture, which leads to femoral joint line elevation. There is a paucity of data describing the effect of joint line elevation on mid-flexion stability and knee kinematics. Thus, the goal of this study was to quantify the effect of joint line elevation on mid-flexion laxity. Methods. Six computational knee models with cadaver-specific capsular and collateral ligament properties were implanted with a posterior-stabilized (PS) TKA. A 10° flexion contracture was created in each model to simulate a capsular contracture. Distal femoral resections of + 2 mm and + 4 mm were then simulated for each knee. The knee models were then extended under a standard moment. Subsequently, varus and valgus moments of 10 Nm were applied as the knee was flexed from 0° to 90° at baseline and repeated after each of the two distal resections. Coronal laxity (the sum of varus and valgus angulation with respective maximum moments) was measured throughout flexion. Results. With + 2 mm resection at 30° and 45° of flexion, mean coronal laxity increased by a mean of 3.1° (SD 0.18°) (p < 0.001) and 2.7° (SD 0.30°) (p < 0.001), respectively. With + 4 mm resection at 30° and 45° of flexion, mean coronal laxity increased by 6.5° (SD 0.56°) (p < 0.001) and 5.5° (SD 0.72°) (p < 0.001), respectively. Maximum increased coronal laxity for a + 4 mm resection occurred at a mean 15.7° (11° to 33°) of flexion with a mean increase of 7.8° (SD 0.2°) from baseline. Conclusion. With joint line elevation in primary PS TKA, coronal laxity peaks early (about 16°) with a maximum laxity of 8°. Surgeons should restore the joint line if possible; however, if joint line elevation is necessary, we recommend assessment of coronal laxity at 15° to 30° of knee flexion to assess for mid-flexion instability. Further in vivo studies are warranted to understand if this mid-flexion coronal laxity has negative clinical implications. Cite this article: Bone Joint J 2021;103-B(6 Supple A):87–93


The Journal of Bone & Joint Surgery British Volume
Vol. 59-B, Issue 4 | Pages 433 - 438
1 Nov 1977
Abraham E Verinder D Sharrard W

A follow-up study, on average four years after operation, of seventy-six cildren with myelomeningocele who had surgical treatment for flexion contracture of the knee, is reported. After a single operation sixty-eight knees (55 per cent) had a contracture of less than 20 degrees, which was the main criterion of success. About half of the cases of transplantation of the hamstrings to the femur, division or elongation of the hamstrings, or supracondylar osteotomy had successful results. Transfer of the hamstring tendons to the patella was successful in nine of twelve instances, so giving the lowest rate of failure. Forty-five patients were active walkers at follow-up as compared to eighteen before operation. However, only one of the eleven patients over twelve years of age with a motor level above T.12 was an active walker at review. Several conclusions are drawn. A flexion contracture of the hip greater than 30 degress should be corrected before operation of the knee. Supracondylar osteotomy as a primary procedure should only be used to correct flexion contracture of the knee secondary to malunited fractures. Faradic stimulation is useful in the evaluation of muslce function before operation. An intelligence quotient below 65 and weakness of the arms are relative contraindications for correction of the deformity of the knee


Bone & Joint Research
Vol. 5, Issue 1 | Pages 11 - 17
1 Jan 2016
Barlow JD Morrey ME Hartzler RU Arsoy D Riester S van Wijnen AJ Morrey BF Sanchez-Sotelo J Abdel MP

Aims. Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. Methods. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis. Results. There was no significant difference in post-traumatic contracture between the rosiglitazone and control groups (33° (standard deviation (. sd. ) 11) vs 37° (. sd. 14), respectively; p = 0.4). There was no difference in number or percentage of myofibroblasts. Importantly, there were ten genes and 17 pathways that were significantly modulated by rosiglitazone in the posterior capsule. Discussion. Rosiglitazone significantly altered the genetic expression of the posterior capsular tissue in a rabbit model, with ten genes and 17 pathways demonstrating significant modulation. However, there was no significant effect on biomechanical or histological properties. Cite this article: M. P. Abdel. Effectiveness of rosiglitazone in reducing flexion contracture in a rabbit model of arthrofibrosis with surgical capsular release: A biomechanical, histological, and genetic analysis. Bone Joint Res 2016;5:11–17. doi: 10.1302/2046-3758.51.2000593


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 206 - 209
1 Feb 2007
Houshian S Chikkamuniyappa C Schroeder H

We present the outcome of the treatment of chronic post-traumatic contractures of the proximal interphalangeal joint by gradual distraction correction using an external fixator. A total of 30 consecutive patients with a mean age of 34 years (17 to 54) had distraction for a mean of 16 days (10 to 22). The fixator was removed after a mean of 29 days (16 to 40). Assessment at a mean of 34 months (18 to 54) after completion of treatment showed that the mean active range of movement had significantly increased by 63° (30° to 90°; p < 0.001). The mean active extension gained was 47° (30° to 75°). Patients aged less than 40 years fared slightly better with a mean gain in active range of movement of 65° (30° to 90°) compared with those aged more than 40 years, who had a mean gain in active range of movement of 55° (30° to 70°) but the difference was not statistically significant (p = 0.148). The use of joint distraction to correct chronic flexion contracture of the proximal interphalangeal joint is a minimally-invasive and effective method of treatment


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 2 | Pages 274 - 277
1 Mar 1994
Shah A Asirvatham R

We reviewed retrospectively 94 patients who had undergone soft-tissue release to correct flexion contracture of the knee to determine the incidence of postoperative hypertension. The cause of contracture in most patients was cerebral palsy (45) or old poliomyelitis (39). Twenty patients developed persistent hypertension. Two of them were symptomatic, one developing hypertensive encephalopathy. Patients who had had poliomyelitis were at a higher risk than those with cerebral palsy; the risk increased with bilateral procedures. The amount of correction achieved had no influence on the incidence of hypertension


The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 2 | Pages 327 - 328
1 Mar 1989
Nelson I Atkins R Allen A


The Journal of Bone & Joint Surgery British Volume
Vol. 64-B, Issue 2 | Pages 198 - 201
1 Apr 1982
Leong J Alade C Fang D


Bone & Joint Open
Vol. 4, Issue 4 | Pages 262 - 272
11 Apr 2023
Batailler C Naaim A Daxhelet J Lustig S Ollivier M Parratte S

Aims. The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients. Methods. All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m. 2. (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle). Results. The FBow impact on the mMDFA can be measured by the C’KS angle. The C’KS angle took the localization (length DK) and the importance (FBow angle) of the FBow into consideration. The mean FBow angle was 4.4° (SD 2.4; 0 to 12.5). The mean C’KS angle was 1.8° (SD 1.1; 0 to 5.8). Overall, 84 knees (41%) had a severe FBow (> 5°). The radiological measurements showed very good to excellent intraobserver and interobserver agreements. The C’KS increased significantly when the length DK decreased and the FBow angle increased (p < 0.001). Conclusion. The impact of the diaphyseal femoral deformity on the mechanical femoral axis is measured by the C’KS angle, a reliable and reproducible measurement. Cite this article: Bone Jt Open 2023;4(4):262–272


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 946 - 950
1 May 2021
Ashdown T Hayter E Morris JA Clough OT Little M Hardman J Anakwe RE

Aims. The results of surgery for Dupuytren’s disease can be compromised by the potential for disease recurrence and loss of function. Selecting which patients will benefit from repeat surgery, when to operate, and what procedure to undertake requires judgement and an understanding of patient expectations and functional needs. We undertook this study to investigate patient outcomes and satisfaction following repeat limited fasciectomy for recurrent Dupuytren’s disease. Methods. We prospectively identified all patients presenting with recurrence of Dupuytren’s disease who were selected for surgical treatment with repeat limited fasciectomy surgery between January 2013 and February 2015. Patients were assessed preoperatively, and again at a minimum of five years postoperatively. We identified 43 patients who were carefully selected for repeat fasciectomy involving 54 fingers. Patients with severe or aggressive disease with extensive skin involvement were not included; in our practice, these patients are instead counselled and preferentially treated with dermofasciectomy. The primary outcome measured was change in the Michigan Hand Outcomes Questionnaire (MHQ) score. Secondary outcomes were change in finger range of motion, flexion contracture, Semmes-Weinstein monofilament (SWM) values, and overall satisfaction. Results. There was a significant improvement in MHQ scores, across all domains, with a mean overall score increase of 24 points (p < 0.001). The summed flexion contracture across the metacarpophalangeal joint (MCPJ) and the proximal interphalangeal joint (PIPJ) reduced from means of 72.0° (SD 15.9°) to 5.6° (SD 6.8°) (p < 0.001). A significant increase in maximal flexion was seen at the MCPJ (p < 0.001) but not the PIPJ (p = 0.550). The mean overall satisfaction score from the visual analogue scale was 8.9 (7.9 to 10.0). Complications were uncommon although five fingers showed reduced sensibility at final follow-up. Conclusion. Our study shows that repeat limited fasciectomy for selected patients presenting with recurrence of Dupuytren’s disease can be an effective and safe treatment resulting in excellent patient-reported outcomes and levels of satisfaction. Cite this article: Bone Joint J 2021;103-B(5):946–950


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 128 - 128
1 Jun 2018
Whiteside L
Full Access

When dealing with a flexion contracture, a surgeon first should consider all potential causes, specifically ligament contracture and osteophytes. Then consider the size of the femoral component and its position proximal to distal and also the posterior slope of the tibial component. Most knee flexion contractures are caused by osteophytes and tight ligaments, and once these problems are corrected, no further work needs to be done on the knee. So when the bone surface cuts are made, in general, little compensation is done in terms of positioning the femoral component proximal or distal, or in terms of sloping the tibial component (beyond the normal 3–4 degrees posterior slope), before the ligaments or osteophytes are managed. If the deep medial collateral ligament (MCL) and posterior portion of the superficial MCL are tight, a flexion contracture will almost always be present after the bone surfaces are finished. Once this is corrected with proper ligament releases and removal of osteophytes, then ligament balance and flexion contracture should be reassessed. In the very few cases that still have a flexion contracture, posterior capsule release should be done. Once this is finished, releasing the capsule from both the femur and the medial aspect of the tibia, then ligament balance is reassessed again. If flexion contracture still remains (<10% of cases), then the distal surface of the femur is resected another 4–6 mm, trial components are inserted, and flexion contracture is evaluated. If more bony resection is needed, then changing tibial slope from 4 degrees posterior slope to 0 degrees slope is another step that can be done to remove bone from extension space of the knee finally to achieve full extension. Virtually all flexion contractures, except those with severe contracture resulting from hamstring tightness, can be corrected with this method. In the valgus knee with flexion contracture, similar management is used. Knees that will not extend and remain tight on the lateral side usually are corrected with release of the posterior capsule and posterior portion of the iliotibial band. Just as on the lateral side, bone resection from the distal femur can be performed as a final effort to achieve full extension of the knee. It is worth reiterating that almost all flexion contractures are caused by ligament imbalance, and that over-resection of the distal femur at the start of these cases can easily result in hyperextension that is difficult to manage once ligaments have been balanced


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 8 - 8
1 Feb 2017
Lee H Ham D Lee J Ryu H Chang G Kim S Park Y
Full Access

Introduction. The range of motion (ROM) obtained after total knee arthroplasty (TKA) is an important measurement to evaluate the postoperative outcomes impacting other measures such as postoperative function and satisfaction. Flexion contracture is a recognized complication of TKA, which reduces ROM or stability and is a source of morbidity for patients. Objectives. The purpose of this study was to evaluate the influence of intra-operative soft tissue release on correction of flexion contracture in navigated TKA. Methods. This is prospective cohort study, 43 cases of primary navigation assisted TKA were included. The mean age was 68.3 ± 6.8 years. All patients were diagnosed with grade 4 degenerative arthritis in K-L grading system. The average preoperative mechanical axis deviation was 10.3° ± 5.3 and preoperative flexion contracture was 12.8° ± 4.8. All arthroplasties were performed using a medial parapatellar approach with patellar subluxation. First, medial release was performed, and posterior cruciate ligament was sacrificed. After all bone cutting was performed and femoral and tibial trials were inserted, removal of posterior femoral spur and capsular release were performed. The degree of correction of flexion contracture was evaluated and recorded with navigation. Results. After the medial soft tissue release, as a first step, the flexion contracture was recorded as 7.2° ± 4.3 and 4.1° ± 4.0 as varus. The second step, posterior cruciate ligament was sacrificed, the flexion contracture was recorded as 7.2° ± 4.4 and 5.5° ± 3.0 as varus. After posterior clearing procedure and capsular release, the flexion contracture was showed as 3.9° ± 1.2 and 1.4° ± 1.2 as varus. The final angles after cemented real implant were recorded as 3.3° ± 1.4 in flexion contracture, 0.9° ± 1.8 in varus. There were significant differences all steps except between medial release step and posterior cruciate sacrifice step and between posterior clearing step and final angle. Conclusions. The appropriate soft tissue balancing could correct flexion contracture intra-operatively. The medial release could correct the flexion contracture around 5° compared with preoperative flexion contracture, and posterior clearing procedure could improve further extension. However, the sacrifice of posterior cruciate ligament provided little effect on correction of the flexion contracture intra-operatively


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 94 - 94
1 Apr 2019
Osman A Tarabichi S Haidar F
Full Access

Introduction. Stiffness postTotal Knee Replacement (TKR) is a common, complex and multifactorial problem. Many reports claim that component mal-rotation plays an important role in this problem. Internal mal-rotation of the tibial component is underestimated among surgeons when compared to femoral internal mal-rotation. We believe the internal mal- rotation of thetibial component can negatively affect the full extension of Knee. We performed an in-vivo study of the impact of tibial internal mal-rotation on knee extension in 31 cases. Method. During TKR, once all bony cuts were completed and flexion/extension gaps balanced, we assessed the degree of knee extension using the trial component in the setting of normaltibial rotation and with varying degrees of internal rotation (13–33°, mean 21.2±4.6°). Intra-operative lateral knee X-ray was done to measure the degree of flexion contracture in both groups. We also compared the degree of flexion contracture between CR and PS spacers. Results. The average degree of knee flexion contracture with normal rotation of the tibial component was 0.7±4.1° (range:-9 to 10), whereas after tibial internal rotation was 7.3±4.6° (range:-1 to 23)(P – value:0.001). The increase in the flexion contracture deformity was higher with PS spacer (7.18±2.61) than with CR spacers (5.22±2.05). Conclusion. The internal mal-rotation of the tibial component limits the ability of the tibia to externally rotate on the femur, thereby limiting full knee extension and leading to flexion contracture


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 53 - 53
1 May 2019
Lombardi A
Full Access

The etiology of the flexion contracture is related to recurrent effusions present in a knee with end-stage degenerative joint disease secondary to the associated inflammatory process. These recurrent effusions cause increased pressure in the knee causing pain and discomfort. Patients will always seek a position of comfort, which is slight flexion. Flexion decreases the painful stimulus by reducing pressure in the knee and relaxing the posterior capsule. Unfortunately, this self-perpetuating process leads to a greater degree of contracture as the disease progresses. Furthermore, patients rarely maintain the knee in full extension. Even during the gait cycle the knee is slightly flexed. As their disease progresses, patients limit their ambulation and are more frequently in a seated position. Patients often report sleeping with a pillow under their knee or in the fetal position. All of these activities increase flexion contracture deformity. Patients with excessive deformity >40 degrees should be counseled regarding procedural complexity and that increasing constraint may be required. Patients are seen preoperatively by a physical therapist and given a pre-arthroplasty conditioning program. Patients with excessive flexion contracture are specifically instructed on stretching techniques, as well as quadriceps rehabilitation exercises. The focus in the postoperative physiotherapy rehabilitation program continues toward the goal of full extension. Patients are instructed in appropriate stretching regimes. Patients are immobilised for the first 24 hours in full extension with plaster splints, such as with a modified Robert Jones dressing. This dressing is removed on postoperative day one. The patient is then placed in a knee immobiliser and instructed to wear it at bed rest, during ambulation and in the evening, only removing for ROM exercises. In cases of severe flexion deformity >30 degrees, patients are maintained in full extension for 3–4 weeks until ROM is begun. Patients are encouraged to use a knee immobiliser for at least the first 6 weeks postoperatively. Treating patients with flexion contracture involves a combination of bone resection and soft tissue balance. One must make every effort to preserve both the femoral and tibial joint line. In flexion contracture the common error is to begin by resecting additional distal femur, which may result in joint line elevation and mid-flexion instability. The distal femoral resection should remove that amount of bone being replaced with metal. Attention should be directed at careful and meticulous balance of the soft tissues and release of the contracted posterior capsule with re-establishment of the posterior recess, which will correct the majority of flexion contractures. Inability to achieve ROM after TKA represents a frustrating complication for both patient and surgeon. Non-operative treatments for the stiff TKA include shoe lift in contralateral limb, stationery bicycle with elevated seat position, extension bracing, topical application of hand-held instruments to areas of soft tissue-dysfunction by a trained physical therapist over several outpatient sessions, and use of a low load stretch device. Manipulation under anesthesia is indicated in patients after TKA having less than 90 degrees ROM after 6 weeks, with no progression or regression in ROM. Other operative treatments range from a downsizing exchange of the polyethylene bearing to revision with a constrained device and low-dose irradiation in cases of severe arthrofibrosis


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 107 - 107
1 Jan 2016
Onodera T Kasahara Y Seito N Nishio Y Kondo E Iwasaki N Majima T
Full Access

Introduction. The effect of the implant posterior condylar offset has recently generated much enthusiasm among researchers. Some reports were concerned about the relationship between the posterior condylar offset and an extension gap. However, the posterior condylar offset was measured in a flexed knee position or in reference to femoral anatomy alone. Posterior femoral condylar offset relative to the posterior wall of the tibia (posterior offset ratio; POR) is possibly the risk of knee flexion contracture associated with posterior femoral condylar offset after TKA. However, there are no reports concerning the relationship between POR and flexion contracture in vivo. The aim of this study is to evaluate the relationship between the measurement of POR and flexion contracture of the knee in vivo. Methods. Twenty-seven patients who underwent a primary total knee arthroplasty (PFC Sigma RP-F) were participated in the study. The lateral femoro-tibial angle (lateral FTA) was measured using lateral radiographs obtained by two procedures. Two procedures are applied to obtain true lateral radiographs of the lower extremities. (1) Full-length true lateral radiographs on standing, (2) True lateral radiographs in the prone position (Fig. 1A). ‘Posterior offset ratio’ was defined as Fig. 1B. Significant differences among groups were assessed using two-tailed Student's t-tests. Spearman's correlation analysis was performed to evaluate the relationship between lateral FTA and posterior offset ratio of patients. Results. The mean value of the POR on standing was 14.94 ± 7.53%. The mean value of flexion contracture of the knee on standing was 11.67 ± 9.21 degree and that in the prone position was 4.22 ± 6.17 degree (P = 0.001). The POR was negatively correlated with flexion contracture of the knee in all procedures with statistical significance (standing: r = 0.62, P = 0.0039; prone: r = 0.66, P = 0.0001) (Fig. 2). Discussion. We have evaluated flexion contracture by two procedures. The mean value of flexion contracture of the knee on standing was 11.67 ± 9.21 degree, whereas that in the prone position was 4.22 ± 6.17 degree. We surmised that this discrepancy occurred due to the flexor muscle tension on standing. In terms of the evaluation of posterior soft tissue tightness of the knee, muscle relaxation can be achieved in prone position is rather than standing position. Our study investigated the relationship between the posterior protrusions of the posterior condyle of the femur relative to the tibia (POR) and flexion contracture after TKA evaluated by two measurement procedures. POR is strongly correlated with flexion contracture evaluated by both measurement procedures. The value of POR of this implant in vitro was about 25% in previous study, whereas the mean value of POR in vivo was 14.94%, suggesting that POR in the flexion contracture knee relatively reduced because posterior soft tissue pushed femoral component anteriorly. Our result clearly showed that if posterior clearance is insufficient, flexion contracture occur due to posterior soft tissue tightness. In conclusion, POR after TKA in vivo negatively correlate with flexion contracture presumably because posterior soft tissue pushed femoral component anteriorly


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 426 - 433
1 Apr 2020
Boettner F Sculco P Faschingbauer M Rueckl K Windhager R Kasparek MF

Aims. To compare patients undergoing total knee arthroplasty (TKA) with ≤ 80° range of movement (ROM) operated with a 2 mm increase in the flexion gap with matched non-stiff patients with at least 100° of preoperative ROM and balanced flexion and extension gaps. Methods. In a retrospective cohort study, 98 TKAs (91 patients) with a preoperative ROM of ≤ 80° were examined. Mean follow-up time was 53 months (24 to 112). All TKAs in stiff knees were performed with a 2 mm increased flexion gap. Data were compared to a matched control group of 98 TKAs (86 patients) with a mean follow-up of 43 months (24 to 89). Knees in the control group had a preoperative ROM of at least 100° and balanced flexion and extension gaps. In all stiff and non-stiff knees posterior stabilized (PS) TKAs with patellar resurfacing in combination with adequate soft tissue balancing were used. Results. Overall mean ROM in stiff knees increased preoperatively from 67° (0° to 80°) to 114° postoperatively (65° to 135°) (p < 0.001). Mean knee flexion improved from 82° (0° to 110°) to 115° (65° to 135°) and mean flexion contracture decreased from 14° (0° to 50°) to 1° (0° to 10°) (p < 0.001). The mean Knee Society Score (KSS) improved from 34 (0 to 71) to 88 (38 to 100) (p < 0.001) and the KSS Functional Score from 43 (0 to 70) to 86 (0 to 100). Seven knees (7%) required manipulations under anaesthesia (MUA) and none of the knees had flexion instability. The mean overall ROM in the control group improved from 117° (100° to 140°) to 123° (100° to 130°) (p < 0.001). Mean knee flexion improved from 119° (100° to 140°) to 123° (100° to 130°) (p < 0.001) and mean flexion contracture decreased from 2° (0° to 15°) to 0° (0° to 5°) (p < 0.001). None of the knees in the control group had flexion instability or required MUA. The mean KSS Knee Score improved from 48 (0 to 80) to 94 (79 to 100) (p < 0.001) and the KSS Functional Score from 52 (5 to 100) to 95 (60 to 100) (p < 0.001). Mean improvement in ROM (p < 0.001) and KSS Knee Score (p = 0.017) were greater in knees with preoperative stiffness compared with the control group, but the KSS Functional Score improvement was comparable (p = 0.885). Conclusion. TKA with a 2 mm increased flexion gap provided a significant improvement of ROM in knees with preoperative stiffness. While the improvement in ROM was greater, the absolute postoperative ROM was less than in matched non-stiff knees. PS TKA with patellar resurfacing and a 2 mm increased flexion gap, in combination with adequate soft tissue balancing, provides excellent ROM and knee function when stiffness of the knee had been present preoperatively. Cite this article: Bone Joint J 2020;102-B(4):426–433


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 90 - 90
1 May 2016
Kawashima H Nakano S Yoshioka S Toki S Kashima M Nakamura M Chikawa T Kanematsu Y Sairyo K
Full Access

Flexion contracture sometimes occurs after primary total knee arthroplasty (TKA). In most cases, flexion contracture after TKA gradually improves over time. However, some severe cases require manipulation or revision surgery. We searched our clinical database for patients who underwent primary TKA at our institution between 2008 and 2015. By reviewing patient records, we identified three patients (one man and two women) with a severe flexion contracture 30° after primary TKA. Although all three patients gained more than 120° in flexion intraoperatively, they developed flexion contracture after discharge from our institution. We performed manipulation under anaesthesia (MUA) for all three cases several months later. The two female patients had improved range of motion (ROM) right after the manipulation. However, one of them regained flexion contracture 1 year after the MUA. We report the details of the male patient, who had the worst flexion contracture (−60°). An 80-year-old man had right knee osteoarthritis. His history indicated only hypertension. The right knee ROM before the TKA was −20° extension and 135° flexion. His radiographs showed advanced-stage osteoarthritis. We performed cemented TKA (posterior stabiliser design). Three weeks after the operation, his right knee pain improved. The right knee ROM was −10° extension and 100° flexion just before discharge. However, he returned to our institution because of right knee pain and flexion contracture 31 months after the surgery. The flexion contracture gradually worsened without any trauma. When he returned, the right knee ROM was −60° extension and 135° flexion. Manipulation under general anaesthesia was not effective. Therefore, we performed revision TKA immediately. We excised the scar tissue of the posterior knee joint. Then, we shortened the distal femoral end by 1 cm and reduced the size of the femoral component. After the operation, the right knee ROM was improved to −10° flexion and 130° extension. The reported prevalence of stiffness after TKA was from 1.3% to 13%. Although the deleterious effects of persistent flexion contractures > 15° is well understood, whether they resolve with time or need surgical intervention is controversial. MUA is generally the initial option for patients with flexion contractures, with the possibility of some improvement. If severe flexion contracture remains after manipulation, revision TKA, which may be considered as a useful treatment option, should be considered


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 14 - 14
1 Oct 2020
Mayman DJ Elmasry SS Chalmers BP Sculco PK Kahlenberg C Wright TE Westrich GH Imhauser CW Cross MB
Full Access

Introduction. Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture. However, the effect of joint line proximalization on TKA kinematics is unclear. Thus, our goal was to quantify the effect of additional distal femoral resection on knee extension and mid-flexion laxity. Methods. Six computational knee models with TKA-specific capsular and collateral ligament properties were implanted with a contemporary posterior-stabilized TKA. A 10° flexion contracture was modeled to simulate a capsular contracture. Distal femoral resections of +2 mm and +4 mm were simulated for each model. The knees were then extended under standardized torque to quantify additional knee extension achieved. Subsequently, varus and valgus torques of ±10 Nm were applied as the knee was flexed from 0° to 90° at the baseline, +2 mm, and +4 mm distal resections. Coronal laxity, defined as the sum of varus and valgus angulation with respective torques, was measured at mid-flexion. Results. With +2 mm and +4 mm of distal femoral resection, the knee extended an additional 4°±0.5° and 8°±0.75°, respectively. At 30° and 45°of flexion, baseline laxity averaged 4.8° and 5.0°, respectively. At +2 mm resection, mean coronal laxity increased by 3.1° and 2.7° at 30° and 45°of flexion, respectively. At +4 mm resection, mean coronal laxity increased by 6.5° and 5.5° at 30° and 45° of flexion, respectively. Maximal increased coronal laxity for a +4 mm resection occurred at a mean 16° (range, 11–27°) of flexion with a mean increased laxity of 7.8° from baseline. Conclusion. While additional distal femoral resection in primary TKA increases knee extension, the consequent joint line elevation induces up to 8° of coronal laxity in mid-flexion in this computational model. As such, posterior capsular release prior to resecting additional distal femur to correct a flexion contracture should be considered


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 104 - 104
1 Jun 2018
Lombardi A
Full Access

The etiology of the flexion contracture is related to recurrent effusions present in a knee with end-stage degenerative joint disease secondary to the associated inflammatory process. These recurrent effusions cause increased pressure in the knee causing pain and discomfort. Patients will always seek a position of comfort, which is slight flexion. Flexion decreases the painful stimulus by reducing pressure in the knee and relaxing the posterior capsule. Unfortunately, this self-perpetuating process leads to a greater degree of contracture as the disease progresses. Furthermore, patients rarely maintain the knee in full extension. Even during the gait cycle the knee is slightly flexed. As their disease progresses, patients limit their ambulation and are more frequently in a seated position. Patients often report sleeping with a pillow under their knee or in the fetal position. All of these activities increase flexion contracture deformity. Patients with excessive deformity >40 degrees should be counseled regarding procedural complexity and that increasing constraint may be required. Patients are seen pre-operatively by a physical therapist and given a pre-arthroplasty conditioning program. Patients with excessive flexion contracture are specifically instructed on stretching techniques, as well as quadriceps rehabilitation exercises. Avoiding Pitfalls and Complications: Treating patients with flexion contracture involves a combination of bone resection and soft tissue balance. One must make every effort to preserve both the femoral and tibial joint line. In flexion contracture the common error is to begin by resecting additional distal femur, which may result in joint line elevation and mid-flexion instability. The distal femoral resection should remove that amount of bone being replaced with metal. Attention should be directed at careful and meticulous balance of the soft tissues and release of the contracted posterior capsule with re-establishment of the posterior recess, which will correct the majority of flexion contractures. Residual Flexion Contracture: Inability to achieve ROM after TKA represents a frustrating complication for both patient and surgeon. Non-operative treatments for the stiff TKA include shoe lift in contralateral limb, stationery bicycle with elevated seat position, extension bracing, topical application of hand-held instruments to areas of soft tissue-dysfunction by a trained physical therapist over several outpatient sessions, and use of a low load stretch device. Manipulation under anesthesia is indicated in patients after TKA having less than 90 degrees ROM after 6 weeks, with no progression or regression in ROM. Other operative treatments range from a downsizing exchange of the polyethylene bearing to revision with a constrained device and low-dose irradiation in cases of severe arthrofibrosis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 57 - 57
1 Feb 2021
Elmasry S Chalmers B Sculco P Kahlenberg C Mayman D Wright T Westrich G Cross M Imhauser C
Full Access

Introduction. Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture to restore range of motion and knee function. However, the effect of joint line elevation on the resulting TKA kinematics including frontal plane laxity is unclear. Thus, our goal was to quantify the effect of additional distal femoral resection on passive extension and mid-flexion laxity. Methods. Six computational knee models with capsular and collateral ligament properties specific to TKA were developed and implanted with a contemporary posterior-stabilized TKA. A 10° flexion contracture was modeled by imposing capsular contracture as determined by simulating a common clinical exam of knee extension and accounting for the length and weight of each limb segment from which the models were derived (Figure 1). Distal femoral resections of 2 mm and 4 mm were simulated for each model. The knees were then extended by applying the measured knee moments to quantify the amount of knee extension. The output data were compared with a previous cadaveric study using a two-sample two-tailed t-test (p<0.05) [1]. Subsequently, varus and valgus torques of ±10 Nm were applied as the knee was flexed from 0° to 90° at the baseline, and after distal resections of 2 mm, and 4 mm. Coronal laxity, defined as the sum of varus and valgus angulation in response to the applied varus and valgus torques, was measured at 30° and 45°of flexion, and the flexion angle was identified where the increase in laxity was the greatest with respect to baseline. Results. With 2 mm and 4 mm of distal femoral resection, the knee extended an additional 4°±0.5° and 8°±0.75°, respectively (Figure 2). No significant difference was found between the extension angle predicted by the six models and the results of the cadaveric study after 2 mm (p= 0.71) and 4 mm (p= 0.47). At 2 mm resection, mean coronal laxity increased by 3.1° and 2.7° at 30° and 45°of flexion, respectively. At 4 mm resection, mean coronal laxity increased by 6.5° and 5.5° at 30° and 45° of flexion, respectively (Figures 3a and 3b). The flexion angle corresponding to the greatest increase in coronal laxity for 2 mm of distal resection occurred at 22±7° of flexion with a mean increase in laxity of 4.0° from baseline. For 4 mm distal resection, the greatest increase in coronal laxity occurred at 16±6° of flexion with a mean increase in laxity of 7.8° from baseline. Conclusion. A TKA computational model representing a knee with preoperative flexion contracture was developed and corroborated measures from a previous cadaveric study [1]. While additional distal femoral resection in primary TKA increases passive knee extension, the consequent joint line elevation induced up to 8° of additional coronal laxity in mid-flexion. This additional midflexion laxity could contribute to midflexion instability; a condition that may require TKA revision surgery. Further studies are warranted to understand the relationship between joint line elevation, midflexion laxity, and instability. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 24 - 24
1 Apr 2018
Adi MM Abdelnasser MK Haidar F Osman A Tarabichi S
Full Access

Introduction. Stiffness post Total Knee Replacement (TKR) is a common, complex and multifactorial problem. Many reports claim that component mal-rotation plays an important role in this problem. Internal mal-rotation of the tibial component is underestimated among surgeons when compared to femoral internal mal-rotation. We believe the internal mal-rotation of the tibial component can negatively affect the full extension of Knee. We performed an in-vivo study of the impact of tibial internal mal-rotation on knee extension in 31 cases. Method. During TKR, once all bony cuts were completed and flexion/extension gaps balanced, we assessed the degree of knee extension using the trial component in the setting of normal tibial rotation and with varying degrees of internal rotation (13–33°, mean 21.2±4.6°). Intra-operative lateral knee X-ray was done to measure the degree of flexion contracture in both groups. We also compared the degree of flexion contracture between CR and PS spacers. Results. The average degree of knee flexion contracture with normal rotation of the tibial component was 0.7±4.1° (range: −9 to 10), whereas after tibial internal rotation was 7.3±4.6° (range: −1 to 23) (P – value:0.001). The increase in the flexion contracture deformity was higher with PS spacer (7.18±2.61) than with CR spacers (5.22±2.05). Conclusion. The internal mal-rotation of the tibial component limits the ability of the tibia to externally rotate on the femur, thereby limiting full knee extension and leading to flexion contracture