Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:

Introduction. Patient-specific cutting guides entered into clinical practice few years ago, first introduced in total knee replacement and recently also for other joint replacements. Advantages claimed are improving accuracy and repeatability in implant placement. New patient-specific guides to perform an accurate femoral neck resection and provide a precise alignment reference for acetabular reaming in total hip arthroplasty (THA) were recently developed by Medacta International: MyHip Technology. To date femoral guides can be designed for both anterior and posterior approaches, whereas acetabular guides are available only for posterior approach. Evaluation of the repeatability and reproducibility of MyHip guides placement on cadavers is performed using a navigation system. Accuracy of femoral MyHip guides is evaluated also through one author's clinical experience (RP). Materials and Methods. During each cadaveric session one body (2 hips) was available. A pre-operative CT scan has been obtained and used in order to create the 3D bone model of the pelvis and proximal femurs. Afterwards, a surgical planning for THA has been performed for each case, and, once it was approved by the surgeons, the designed patient-specific blocks were made. Intraobserver and interobserver agreement in positioning the guides was assessed getting measures of femoral head resection height (mm), femoral head plane inclination/anteversion (°) and acetabular reaming axis orientation (°). 9 surgeons, through 2 cadaveric sessions, positioned each guide, removed it and re-positioned it 5 times alternatively. The system is judged as accurate if all measures differ less than 3mm and 5°for lengths and angles respectively from the average among all the acquisitions. Clinical experience includes 68 THA which were performed between March 2014 and April 2015. Anterior femoral MyHip guides were used for the femoral head resection, while the acetabular side was prepared using the standard metal instrumentation for minimally invasive anterior approach. Intra-operative complications, as well post-operative leg length difference and implant positioning are assessed. Results. During cadaveric sessions, all measures taken meet the acceptance criteria with the exception of two measures, which are −5,98° and −5,57°, in femoral head plane anteversion and inclination respectively with femoral anterior guides. Looking at intraobserver variation, MyHip Femoral anterior guide positioning average deviation was between −0.91 mm and 1.44 mm (resection height), −1.25° and 1.41° (anteversion), and −0.85° and 0.82° (inclination); MyHip Femoral posterior guide positioning average deviation was between −0.47 mm and 0.67 mm (resection height), −1.33° and 1.50° (anteversion), −0.66° and 1.50° (inclination); MyHip Acetabular posterior guide had an average z-axis deviation from the mean value between −0.91° and 0.91°. All surgeries were successfully performed. The surgeon feels a good fitting and stability of the guide during each surgery. A preliminary analysis suggests optimal outcomes in terms of accurate prosthetic component positioning and reduction of occurrence of leg length inequality. Conclusion. Cadaveric sessions show intraobserver and intraobserver agreement, demonstrating reproducibility and repeatability in placement of MyHip patient specific cutting guides. Clinical experience confirms the advantages claimed by this technique, suggesting a possible reduction of complications usually linked to implant malpositioning, such as wear, impingement, risk of luxation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 71 - 71
1 Oct 2012
Bäthis H Shafizadeh S Banerjee M Tjardes T Bracke B Neubauer T Bouillon B
Full Access

In order to enhance the acceptance of computer assisted surgery in joint replacement, a development-cooperation with BrainLAB, Germany was set up to develop a user-friendly handheld navigation device. A sterile draped Apple® IPod-Touch which is placed into a hardcover cradle, is used as navigation monitor and touchscreen control. Different instruments, such as navigation-pointer are attached to the cradle. In addition the workflows for TKR and THR procedures have been optimised. Therefore the main focus for TKR is navigation of femoral and tibial resection as well as leg alignment control. For the THR the system enables an intraoperative control of leg-length and femoral-offset measurement in comparison with the preoperative situation. Each step of the procedure is supported by video animations of the specific navigation workflow. Between September and December 2010 the first clinical study on the usability in TKR and THR was performed for 20 cases using a prototype system. The study was approved by the local ethic committee and the “German Federal Institute for Drugs and Medical Devices (BfArM)”. Special interest was taken to the aspects of usability and the necessary time periods for specific steps of the procedure. Usability was measured for specific time periods of the procedure assessment of the usability of the surgical team. In addition postoperative x-rays were evaluated for implant position, leg alignment for TKR and hip joint geometry for THR cases. Throughout the study for each assigned patient the procedure could be performed as planned. Several design inputs were identified for further improvement of the final system. Therefore time measurements of the first five cases were excluded. For the TKR cases the registration process of the last 5 cases was less than 3 minutes. The interval for the tibial resection was between 3 and 7 minutes (aligning tibial cutting block – end of tibial verification). The interval for the distal femur resection was between 7 and 11 minutes (aligning femoral cutting block – end of femoral verification). All 10 Patients showed a final leg alignment on the postoperative standing x-ray within the save-zone of +/− 3° from neutral alignment. For the THR cases the preoperative registration period including the femoral head resection and acetabular registration was between 7 and 12 Minutes. Each final measurement of the hip geometry was done in less than 2 minutes. The evaluation of the pelvic ap-x-ray pre- and postoperative showed equivalent measurements of the new hip geometry compared with the intraoperative measured values. No specific complications occurred throughout the study. In conclusion the BrainLAB–DASH-System has shown a high grade of usability and very short learning curve within this first clinical study. The use of a standard Apple® IPod-touch as a user interface seems to enhance the acceptance of the navigation technique. Equivalent precision compared to standard navigation systems have been demonstrated