Introduction. The posterior condylar axis of the knee is the most common reference for
Purpose. Incidence of malrotation of femoral fractures after intramedullary nailing is as high as 28%. Prevention of malrotation is superior to late derotation osteotomy. The lesser trochanter (LT) profile has been in use for some time as a radiographic landmark of
Introduction & aims. Correct prosthetic alignment is important to the longevity and function of a total hip replacement (THR). With the growth of 3-dimensional imaging for planning and assessment of THR, the importance of restoring, not just leg length and medial offset, but anterior offset has been raised. The change in anterior offset will be influenced by
Introduction. Positioning of a femoral sizing guide has been cited as being a critical intraoperative step during measured-resection based TKA as it determines femoral component rotation. Consequently, modern femoral sizing guides permit surgeons to ‘dial in’ external rotation when placing the guide. Although this feature facilitates guide placement, its effect on posterior femoral condylar resection and flexion gap stability is unknown. This study examines the effect of rotation on posterior femoral condylar resection among different posterior-referencing TKA designs. Methods. Left-sided posterior-referencing femoral sizing guides and cutting blocks from nine posterior-referencing femoral sizing guides belonging to six TKA manufacturers were collected. Each guide underwent high-resolution photography at a setting of zero, three and greater than three degrees of external rotation. The axis of rotation for each guide was then identified and its location from the posterior condylar axis was recorded (figure). Cutting blocks from each system were then photographed and the amount of posterior condylar resection from the medial and lateral condyles was calculated for each setting of external rotation (figure). The posterior resection was then compared to the standard distal resections for each system. Results. Two sizing guides had axes of rotation that were eccentrically located and in proximity to the posterior condylar axis, six were centrally based and one was slightly eccentric. Axis of rotation location had substantial effects on posterior condylar resection. Guides with centrally-based axes tended to resect more medial posterior condyle and less lateral condyle as rotation increased. Guides with eccentric axes tended to resect either less lateral or more medial condyle only. Discussion. This study is the first to investigate
Background. When positioning and rotating the femoral cutting block (AP) on the femur it can either be done according to bony landmarks (measured resection) or by tensioning the flexion gap and positioning it parallel to the tibia (gap balanced technique.) Accurate rotation of the femoral component is essential to ensure a symmetric flexion gap to ensure optimal tibio-femoral kinematics and patello-femoral tracking. Methods. 74 consecutive total knee replacements were assessed intra-operatively for symmetry of the flexion gap by applying a varus and a valgus stress and digitally recording the opening with a computer assisted navigation system. External rotation of the femoral component according to the bony landmarks was measured radiologically. This was compared to the external rotation suggested by the navigation intra-operatively using a gap balanced workflow. Results. The gap balanced technique gave a symmetric flexion gap with less than 3 mm side to side difference in 95% of cases. In 84% of cases (62 of 74) the gap balanced technique was more accurate than the measured resection technique in determining
INTRODUCTION. The restoration of physiological kinematics is one of the goals of a total knee arthroplasty (TKA). Navigation systems have been developed to allow an accurate and precise placement of the implants. But its application to the intraoperative measurement of knee kinematics has not been validated. The hypothesis of this study was that the measurement of the knee axis,
Dislocation is one of the most common complications in total hip arthroplasty (THA) and is primarily driven by bony or prosthetic impingement. The aim of this study was two-fold. First, to develop a simulation that incorporates the functional position of the femur and pelvis and instantaneously determines range of motion (ROM) limits. Second, to assess the number of patients for whom their functional bony alignment escalates impingement risk. 468 patients underwent a preoperative THA planning protocol that included functional x-rays and a lower limb CT scan. The CT scan was segmented and landmarked, and the x-rays were measured for pelvic tilt,
Background. Authors sought to determine the degree of lateral condylar hypoplasia of distal femur was related to degree of valgus malalignment of lower extremity in patients who underwent TKA. Authors also examined the relationships between degree of valgus malalignment and degree of
Purpose. The purpose of this study was to elucidate kinematic change according to the implant's specific
Introduction. Several reports demonstrated the overcoverage of the anterior acetabulum. Anterior CE angle over 46°may be a probable risk factor for pincer FAI syndrome after a rotational acetabular osteotomy. In addition, a highly anteverted femoral neck, reported as a risk factor for posterior impingement, has been found in DDH patients. These findings indicate proper acetabular reorientation is essential to avoid anterior or posterior impingement after periacetabular osteotomy (PAO). The aim of this study was to evaluate the relationship between acetabular three-dimensional (3D) alignment reorientation and clinical range of motion (ROM) after periacetabular osteotomy (PAO). Methods. A total of 53 patients who underwent curved PAO (CPO) for DDH from January 2014 to April 2017 were selected. Three (5.7%) of them were lost to follow-up. Therefore, the data from 58 hips, contributed by 50 patients (44 women and 6 men), were included in the analysis. Pre- and postoperative computed tomography (CT) scans from the pelvis to the knee joint were performed and transferred to a 3D template software (Zed Hip; Lexi, Tokyo, Japan). The pelvic plane axis was defined according to the functional pelvic plane. The pre- and postoperative lateral and anterior 3D center-edge (CE) angles were measured on the coronal and sagittal views through the center of the femoral head. The pre- and postoperative 3D center-edge (CE) angles and
Both gap balancing and measured resection for TKA will work and these techniques are often combined in TKA. The only difference is really the workflow. The essential difference in gap balancing is that you determine femoral component rotation by cutting the distal femur and the proximal tibia, and then using a spacer to determine
Introduction. 11%–19% of patients are unsatisfied with outcomes from Total Knee Arthroplasty (TKA). This may be due to problems of alignment or soft-tissue balancing. In TKA, often a neutral mechanical axis is established followed by soft tissue releases to balance and match the flexion/extension gaps with the distal femoral and proximal tibial resections at right angles to the mechanical axis. Potential issues with establishment of soft tissue balance are due to associated structures such as bone tissue of the knee, the static (or passive) stabilizers of the joint (medial and lateral collateral ligaments, capsule, and anterior and posterior cruciate ligaments), and the dynamic (or active) stabilizers around the knee. An optimized balance among these systems is crucial to the successful outcome of a TKA. Additionally, the importance of correct
Introduction. Optimal implant position is the important factor in the hip stability after THA. Both the acetabular and femoral implants are placed in anteversion. While most hip dislocations occur either in standing position or when the hip is flexed, preoperative hip anatomy and postoperative implants position are commonly measured in supine position with CT scan. The isolated and combined anteversions of femoral and acetabular components have been reported in the literature. The conclusions are questionable as the reference planes are not consistent:
Introduction. Range of motion (ROM) simulation of the hip is useful to understand the maximum impingement free ROM in total hip arthroplasty (THA). In spite of a complex multi-directional movement of the hip in daily life, most of the previous reports have evaluated the ROM only in specific directions such as flexion-extension, abduction-adduction, and internal - external rotation at 0° or 90° of hip flexion. Therefore, we developed ROM simulation software (THA analyzer) to measure impingement free ROM in any positions of the hip. Recent designs of the hip implants give a wider ROM by increasing the head diameter and then, bone to bone impingement can be a ROM limit factor particularly in a combination of deep flexion, adduction and internal rotation of the hip. Therefore, the purpose of this study were to observe an individual variation in the pattern of the bone impingement ROM in normal hip bone models using this software, to classify the bone impingement ROM mapping types and to clarify the factors affecting the bone impingement type. Methods. The subjects were 15 normal hips of 15 patients. Three dimensional surface models of the pelvis and femur were reconstructed from Computer tomography (CT) images. We performed virtual hip implantation with the same center of rotation, femoral offset, and leg length as the original hips. Subsequently, we created the ROM mapping until bone impingement using THA analyzer. We measured the following factors influenced on the bone impingement map patterns; the neck shaft angle, the femoral offset,
Introduction. The midcortical line, the midline between the anterior and the posterior cortical walls has been reported as an intraoperative reference guide for reproducing the true
Combined acetabular and
Introduction. Most of studies on Total Hip Arthroplasty (THA) are focused on acetabular cup orientation. Even though the literature suggests that
The “correct” rotational alignment and “normal” rotational alignment may not be the same position. Because of natural tibial plateau has average 3° varus but classical TKA method make tibial cut perpendicularly to tibial mechanical axis. Consequently
Introduction. Implant position plays a major role in the mechanical stability of a total hip replacement. The standard modality for assessing hip component position postoperatively is a 2D anteroposterior radiograph, due to low radiation dose and low cost. Recently, the EOS® X-Ray Imaging Acquisition System has been developed as a new low-dose radiation system for measuring hip component position. EOS imaging can calculate 3D patient information from simultaneous frontal and lateral 2D radiographs of a standing patient without stitching or vertical distortion, and has been shown to be more reliable than conventional radiographs for measuring hip angles[1]. The purpose of this prospective study was to compare EOS imaging to computer tomography (CT) scans, which are the gold standard, to assess the reproducibility of hip angles. Materials and Methods. Twenty patients undergoing unilateral THA consented to this IRB-approved analysis of post-operative THA cup alignment. Standing EOS imaging and supine CT scans were taken of the same patients 6 weeks post-operatively. Postoperative cup alignment and
Introduction. Appropriate femoral stem anteversion is an important factor in maintaining stability and maximizing the performance of the bearing after total hip replacement (THR). The anteversion of the native femoral neck has been shown to have a significant effect on the final anteversion of the stem, particularly with a uncemented femoral component. The aim of this study was to quantify the variation in native femoral neck anteversion in a population of patients requiring total hip replacement. Methods. Pre-operatively, 1215 patients received CT scans as part of their routine planning for THR. Within the 3D planning, each patient's native femoral neck anteversion, measured in relation to the posterior condyles of the knee, was determined. Patients were separated into eight groups based upon gender and age. Males and females were divided by those under 55 years of age, those aged 55 to 64, 65 to 74 and those 75 or older. Results. The median anteversion in males was 12.7° (−27.1°–45.5°, IQR 6.0°–19.1°), compared to female anteversion of 16.0° (− 14.0°–54.5°, IQR 9.7°– 22.4°). These gender differences were statistically significant, p < 0.0001.