Advertisement for orthosearch.org.uk
Results 1 - 20 of 104
Results per page:
Bone & Joint Open
Vol. 4, Issue 7 | Pages 507 - 515
6 Jul 2023
Jørgensen PB Jakobsen SS Vainorius D Homilius M Hansen TB Stilling M

Aims. The Exeter short stem was designed for patients with Dorr type A femora and short-term results are promising. The aim of this study was to evaluate the minimum five-year stem migration pattern of Exeter short stems in comparison with Exeter standard stems. Methods. In this case-control study, 25 patients (22 female) at mean age of 78 years (70 to 89) received cemented Exeter short stem (case group). Cases were selected based on Dorr type A femora and matched first by Dorr type A and then age to a control cohort of 21 patients (11 female) at mean age of 74 years (70 to 89) who received with cemented Exeter standard stems (control group). Preoperatively, all patients had primary hip osteoarthritis and no osteoporosis as confirmed by dual X-ray absorptiometry scanning. Patients were followed with radiostereometry for evaluation of stem migration (primary endpoint), evaluation of cement quality, and Oxford Hip Score. Measurements were taken preoperatively, and at three, 12, and 24 months and a minimum five-year follow-up. Results. At three months, subsidence of the short stem -0.87 mm (95% confidence interval (CI) -1.07 to -0.67) was lower compared to the standard stem -1.59 mm (95% CI -1.82 to -1.36; p < 0.001). Both stems continued a similar pattern of subsidence until five-year follow-up. At five-year follow-up, the short stem had subsided mean -1.67 mm (95% CI -1.98 to -1.36) compared to mean -2.67 mm (95% CI -3.03 to -2.32) for the standard stem (p < 0.001). Subsidence was not influenced by preoperative bone quality (osteopenia vs normal) or cement mantle thickness. Conclusion. The standard Exeter stem had more early subsidence compared with the short Exeter stem in patients with Dorr type A femora, but thereafter a similar migration pattern of subsidence until minimum five years follow-up. Both the standard and the short Exeter stems subside. The standard stem subsides more compared to the short stem in Dorr type A femurs. Subsidence of the Exeter stems was not affected by cement mantle thickness. Cite this article: Bone Jt Open 2023;4(7):507–515


Bone & Joint Open
Vol. 3, Issue 10 | Pages 759 - 766
5 Oct 2022
Schmaranzer F Meier MK Lerch TD Hecker A Steppacher SD Novais EN Kiapour AM

Aims. To evaluate how abnormal proximal femoral anatomy affects different femoral version measurements in young patients with hip pain. Methods. First, femoral version was measured in 50 hips of symptomatic consecutively selected patients with hip pain (mean age 20 years (SD 6), 60% (n = 25) females) on preoperative CT scans using different measurement methods: Lee et al, Reikerås et al, Tomczak et al, and Murphy et al. Neck-shaft angle (NSA) and α angle were measured on coronal and radial CT images. Second, CT scans from three patients with femoral retroversion, normal femoral version, and anteversion were used to create 3D femur models, which were manipulated to generate models with different NSAs and different cam lesions, resulting in eight models per patient. Femoral version measurements were repeated on manipulated femora. Results. Comparing the different measurement methods for femoral version resulted in a maximum mean difference of 18° (95% CI 16 to 20) between the most proximal (Lee et al) and most distal (Murphy et al) methods. Higher differences in proximal and distal femoral version measurement techniques were seen in femora with greater femoral version (r > 0.46; p < 0.001) and greater NSA (r > 0.37; p = 0.008) between all measurement methods. In the parametric 3D manipulation analysis, differences in femoral version increased 11° and 9° in patients with high and normal femoral version, respectively, with increasing NSA (110° to 150°). Conclusion. Measurement of femoral version angles differ depending on the method used to almost 20°, which is in the range of the aimed surgical correction in derotational femoral osteotomy and thus can be considered clinically relevant. Differences between proximal and distal measurement methods further increase by increasing femoral version and NSA. Measurement methods that take the entire proximal femur into account by using distal landmarks may produce more sensitive measurements of these differences. Cite this article: Bone Jt Open 2022;3(10):759–766


Bone & Joint Open
Vol. 4, Issue 7 | Pages 472 - 477
1 Jul 2023
Xiang W Tarity TD Gkiatas I Lee H Boettner F Rodriguez JA Wright TM Sculco PK

Aims. When performing revision total hip arthroplasty using diaphyseal-engaging titanium tapered stems (TTS), the recommended 3 to 4 cm of stem-cortical diaphyseal contact may not be available. In challenging cases such as these with only 2 cm of contact, can sufficient axial stability be achieved and what is the benefit of a prophylactic cable? This study sought to determine, first, whether a prophylactic cable allows for sufficient axial stability when the contact length is 2 cm, and second, if differing TTS taper angles (2° vs 3.5°) impact these results. Methods. A biomechanical matched-pair cadaveric study was designed using six matched pairs of human fresh cadaveric femora prepared so that 2 cm of diaphyseal bone engaged with 2° (right femora) or 3.5° (left femora) TTS. Before impaction, three matched pairs received a single 100 lb-tensioned prophylactic beaded cable; the remaining three matched pairs received no cable adjuncts. Specimens underwent stepwise axial loading to 2600 N or until failure, defined as stem subsidence > 5 mm. Results. All specimens without cable adjuncts (6/6 femora) failed during axial testing, while all specimens with a prophylactic cable (6/6) successfully resisted axial load, regardless of taper angle. In total, four of the failed specimens experienced proximal longitudinal fractures, three of which occurred with the higher 3.5° TTS. One fracture occurred in a 3.5° TTS with a prophylactic cable yet passed axial testing, subsiding < 5 mm. Among specimens with a prophylactic cable, the 3.5° TTS resulted in lower mean subsidence (0.5 mm (SD 0.8)) compared with the 2° TTS (2.4 mm (SD 1.8)). Conclusion. A single prophylactic beaded cable dramatically improved initial axial stability when stem-cortex contact length was 2 cm. All implants failed secondary to fracture or subsidence > 5 mm when a prophylactic cable was not used. A higher taper angle appears to decrease the magnitude of subsidence but increased the fracture risk. The fracture risk was mitigated by the use of a prophylactic cable. Cite this article: Bone Jt Open 2023;4(7):472–477


Bone & Joint Research
Vol. 11, Issue 5 | Pages 270 - 277
6 May 2022
Takegami Y Seki T Osawa Y Imagama S

Aims

Periprosthetic hip fractures (PPFs) after total hip arthroplasty are difficult to treat. Therefore, it is important to identify modifiable risk factors such as stem selection to reduce the occurrence of PPFs. This study aimed to clarify differences in fracture torque, surface strain, and fracture type analysis between three different types of cemented stems.

Methods

We conducted biomechanical testing of bone analogues using six cemented stems of three different types: collarless polished tapered (CPT) stem, Versys Advocate (Versys) stem, and Charnley-Marcel-Kerboull (CMK) stem. Experienced surgeons implanted each of these types of stems into six bone analogues, and the analogues were compressed and internally rotated until failure. Torque to fracture and fracture type were recorded. We also measured surface strain distribution using triaxial rosettes.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 79 - 86
1 Feb 2024
Sato R Hamada H Uemura K Takashima K Ando W Takao M Saito M Sugano N

Aims

This study aimed to investigate the incidence of ≥ 5 mm asymmetry in lower and whole leg lengths (LLs) in patients with unilateral osteoarthritis (OA) secondary to developmental dysplasia of the hip (DDH-OA) and primary hip osteoarthritis (PHOA), and the relationship between lower and whole LL asymmetries and femoral length asymmetry.

Methods

In total, 116 patients who underwent unilateral total hip arthroplasty were included in this study. Of these, 93 had DDH-OA and 23 had PHOA. Patients with DDH-OA were categorized into three groups: Crowe grade I, II/III, and IV. Anatomical femoral length, femoral length greater trochanter (GT), femoral length lesser trochanter (LT), tibial length, foot height, lower LL, and whole LL were evaluated using preoperative CT data of the whole leg in the supine position. Asymmetry was evaluated in the Crowe I, II/III, IV, and PHOA groups.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims

This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images.

Methods

The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm3). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis.


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1035 - 1042
1 Dec 2021
Okowinski M Hjorth MH Mosegaard SB Jürgens-Lahnstein JH Storgaard Jakobsen S Hedevang Christensen P Kold S Stilling M

Aims

Femoral bone preparation using compaction technique has been shown to preserve bone and improve implant fixation in animal models. No long-term clinical outcomes are available. There are no significant long-term differences between compaction and broaching techniques for primary total hip arthroplasty (THA) in terms of migration, clinical, and radiological outcomes.

Methods

A total of 28 patients received one-stage bilateral primary THA with cementless femoral stems (56 hips). They were randomized to compaction on one femur and broaching on the contralateral femur. Overall, 13 patients were lost to the ten-year follow-up leaving 30 hips to be evaluated in terms of stem migration (using radiostereometry), radiological changes, Harris Hip Score, Oxford Hip Score, and complications.


Bone & Joint Open
Vol. 2, Issue 10 | Pages 834 - 841
11 Oct 2021
O'Connor PB Thompson MT Esposito CI Poli N McGree J Donnelly T Donnelly W

Aims

Pelvic tilt (PT) can significantly change the functional orientation of the acetabular component and may differ markedly between patients undergoing total hip arthroplasty (THA). Patients with stiff spines who have little change in PT are considered at high risk for instability following THA. Femoral component position also contributes to the limits of impingement-free range of motion (ROM), but has been less studied. Little is known about the impact of combined anteversion on risk of impingement with changing pelvic position.

Methods

We used a virtual hip ROM (vROM) tool to investigate whether there is an ideal functional combined anteversion for reduced risk of hip impingement. We collected PT information from functional lateral radiographs (standing and sitting) and a supine CT scan, which was then input into the vROM tool. We developed a novel vROM scoring system, considering both seated flexion and standing extension manoeuvres, to quantify whether hips had limited ROM and then correlated the vROM score to component position.


Bone & Joint Open
Vol. 2, Issue 7 | Pages 476 - 485
8 Jul 2021
Scheerlinck T De Winter E Sas A Kolk S Van Gompel G Vandemeulebroucke J

Aims. Hip arthroplasty does not always restore normal anatomy. This is due to inaccurate surgery or lack of stem sizes. We evaluated the aptitude of four total hip arthroplasty systems to restore an anatomical and medialized hip rotation centre. Methods. Using 3D templating software in 49 CT scans of non-deformed femora, we virtually implanted: 1) small uncemented calcar-guided stems with two offset options (Optimys, Mathys), 2) uncemented straight stems with two offset options (Summit, DePuy Synthes), 3) cemented undersized stems (Exeter philosophy) with three offset options (CPT, ZimmerBiomet), and 4) cemented line-to-line stems (Kerboul philosophy) with proportional offsets (Centris, Mathys). We measured the distance between the templated and the anatomical and 5 mm medialized hip rotation centre. Results. Both rotation centres could be restored within 5 mm in 94% and 92% of cases, respectively. The cemented undersized stem performed best, combining freedom of stem positioning and a large offset range. The uncemented straight stem performed well because of its large and well-chosen offset range, and despite the need for cortical bone contact limiting stem positioning. The cemented line-to-line stem performed less well due to a small range of sizes and offsets. The uncemented calcar-guided stem performed worst, despite 24 sizes and a large and well-chosen offset range. This was attributed to the calcar curvature restricting the stem insertion depth along the femoral axis. Conclusion. In the majority of non-deformed femora, leg length, offset, and anteversion can be restored accurately with non-modular stems during 3D templating. Failure to restore hip biomechanics is mostly due to surgical inaccuracy. Small calcar guided stems offer no advantage to restore hip biomechanics compared to more traditional designs. Cite this article: Bone Jt Open 2021;2(7):476–485


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 122 - 128
1 Jul 2021
Tibbo ME Limberg AK Gausden EB Huang P Perry KI Yuan BJ Berry DJ Abdel MP

Aims. The prevalence of ipsilateral total hip arthroplasty (THA) and total knee arthroplasty (TKA) is rising in concert with life expectancy, putting more patients at risk for interprosthetic femur fractures (IPFFs). Our study aimed to assess treatment methodologies, implant survivorship, and IPFF clinical outcomes. Methods. A total of 76 patients treated for an IPFF from February 1985 to April 2018 were reviewed. Prior to fracture, at the hip/knee sites respectively, 46 femora had primary/primary, 21 had revision/primary, three had primary/revision, and six had revision/revision components. Mean age and BMI were 74 years (33 to 99) and 30 kg/m. 2. (21 to 46), respectively. Mean follow-up after fracture treatment was seven years (2 to 24). Results. Overall, 59 fractures were classified as Vancouver C (Unified Classification System (UCS) D), 17 were Vancouver B (UCS B). In total, 57 patients (75%) were treated with open reduction and internal fixation (ORIF); three developed nonunion, three developed periprosthetic joint infection, and two developed aseptic loosening. In all, 18 patients (24%) underwent revision arthroplasty including 13 revision THAs, four distal femoral arthroplasties (DFAs), and one revision TKA: of these, one patient developed aseptic loosening and two developed nonunion. Survivorship free from any reoperation was 82% (95% confidence interval (CI) 66.9% to 90.6%) and 77% (95% CI 49.4% to 90.7%) in the ORIF and revision groups at two years, respectively. ORIF patients who went on to union tended to have stemmed knee components and greater mean interprosthetic distance (IPD = 189 mm (SD 73.6) vs 163 mm (SD 36.7); p = 0.546) than nonunited fractures. Patients who went on to nonunion in the revision arthroplasty group had higher medullary diameter: cortical width ratio (2.5 (SD 1.7) vs 1.3 (SD 0.3); p = 0.008) and lower IPD (36 mm (SD 30.6) vs 214 mm (SD 32.1); p < 0.001). At latest follow-up, 95% of patients (n = 72) were ambulatory. Conclusion. Interprosthetic femur fractures are technically and biologically challenging cases. Individualized approaches to internal fixation versus revision arthroplasty led to an 81% (95% CI 68.3% to 88.6%) survivorship free from reoperation at two years with 95% of patients ambulatory. Continued improvements in management are warranted. Cite this article: Bone Joint J 2021;103-B(7 Supple B):122–128


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 7 - 7
2 May 2024
McCabe P Baxter J O'Connor M McKenna P Murphy T Cleary M Rowan F
Full Access

The burden of metastatic disease presenting with axial skeleton lesions is exponentially rising predominantly due to advances in oncological therapies. A large proportion is these lesions are located in the proximal femora, which given its unique biomechanical architecture is problematic. These patients are frequently comorbid and require prompt and concise decision making regarding their orthopaedic care in line with recent British Orthopaedic Association guidelines. We present data detailing the outcomes for patients with proximal femoral metastatic disease referred and treated over a three year period in an Regional Cancer Centre. We retrospectively reviewed a prospectively maintained database of all patients referred for discussion at MDT with axial skeletal metastatic disease. From this we isolated patients with femoral disease. Demographic data along with primary tumour and metastatic disease site were assessed. Treatment regimens were analysed and compared. Finally predicted and actual mortality data was collated. 331 patients were referred over the analysed time period, of which 99 had femoral disease. 66% of patients were managed conservatively with serial monitoring while 34% underwent operative treatment. 65% of those received an intramedullary fixation while 35% had arthroplasty performed. There was a 51:49 split male to female with Prostate, Lung and Breast being the predominant primary tumours. Concurrent spinal metastatic disease was noted in 62% of patients while visceral mets were seen in 37%. Mortality rate was 65% with an average prognosis of 388 days (1.06years) while average mortality was noted within 291 days (0.8 years). Proximal femoral metastatic disease accounts for a large volume of the overall mets burden. There is an overall tendency towards conservative management and of those requiring surgery IM nailing was the treatment of choice. The data would indicate that outcomes for these patients are guarded and on average worse than those predicted


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 7 - 7
1 Oct 2018
Tanzer M
Full Access

Introduction. Porous surfaces developed over the past decades have been shown to promote tissue ingrowth. Hydroxyapatite (HA) coatings have been added to these porous coatings in an attempt to further augment bone ingrowth. The development of additive manufacturing techniques has allowed for precision in building these complex porous structures. The effect of supplemental HA coatings on these new surfaces is unclear. The purpose of this study is to evaluate the biological fixation of a novel 3D printed porous implant in a canine model. In addition, we evaluated the effect of different HA coatings on this 3D printed implant. Methods. A canine transcortical model was used to evaluate the performance of three different laser rapid manufacturing (LRM) Ti6Al4V cylindrical implants (5.2 mm diameter, 10mm length): LRM with precipitated hydroxyapatite (P-HA), LRM with plasma sprayed hydroxyapatite (PS-HA), and a hydroxyapatite-free control (No-HA). The implants were 50–60% porous with a mean pore size of 450 μm and have a random interconnected architecture with irregular pore sizes and shapes that are designed based on the structure of cancellous bone. A lateral approach to the femoral diaphysis was used to prepare 5 mm unicortical, perpendicular drill holes in 12 canines. One of each implant type was press-fit into each femur. The femora were harvested at both 4 and 12 weeks post implantation, radiographed and prepared for either mechanical push-out testing to assess the shear strength of the bone-implant interface (left femora, N=6) or for histological processing (right femora, N=6). An un-paired Student's t-test was used to compare statistical significance between the 4 and 12-week results, as well as differences due to implant type; p<0.05 was considered significant. Results. The post-mortem contact radiographs demonstrated substantial condensation of bone around the implants at both 4 and 12 weeks. Bone ingrowth in the canine femora was observed in all implants, with and without HA, at both time periods under backscattered SEM. The mean extent of bone ingrowth at 4 weeks for no-HA, P-HA, and PS-HA implants was 41.5% (95% CI 32.5 to 50.6), 51.0% (95% CI 45.2 to 56.8) and 53.2% (95% CI 41.6 to 64.7), respectively. The mean extent of bone ingrowth at 12 weeks for no-HA, P-HA, and PS-HA implants was 64.4% (95% CI 61.5 to 67.3), 59.9% (95% CI 51.9 to 67.8) and 64.9% (95% CI 58.2 to 71.6), respectively. There was no significant difference in the amount of bone ingrowth between the HA and non-HA coated implants at any of the time points. All the implants were successfully pushed out after 4 weeks of implantation. The mean shear strength from the push-out test at 4 weeks for the no-HA, P-HA, and PS-HA implants was calculated to be 21.6 MPa (95% CI 17.2 to 26.0), 20.7 MPa (95% CI 18.9 to 22.4), and 20.2 MPa (95% CI 16.3 to 24.2), respectively. At week 12, in two femora all three implant types had compressive failure before rupture of the bone-implant interface with a load of over 2000N. This suggests that the values of shear strength were higher than those calculated from the successful tests at 12 weeks. The mean shear strength for the remaining no-HA, P-HA and PS-HA implants at 12 weeks was calculated to be 39.9 MPa (95% CI 29.8 to 50.9), 33.7 MPa (95% CI 26.3 to 41.2), and 36.0 MPa (95% CI 29.53 to 42.4), respectively. For all implants, the mean shear strength at 12 weeks was statistically significantly greater than at 4 weeks (p<0.05). There was no significant difference in the shear strength between HA coated and non-HA coated implants at 4 or 12 weeks. Conclusion. At 4 and 12 weeks, all non-HA coated LRM Ti6Al4V implants consistently exhibited very high bone ingrowth and mechanical shear strength in the canine model. These results demonstrate that this novel additive manufactured porous implant promoted biological fixation in a canine model. There was no significant improvement in the extent of bone ingrowth with the addition of HA. This is in agreement with the literature indicating that topography is the dominant factor governing bone apposition to hydroxyapatite-coated implants. It is likely that in this model, the morphologic features and roughness of the surface of the LRM implants stimulated osteoblastic activity, so that the addition of HA had a non-significant effect


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 779 - 786
1 Jul 2019
Lamb JN Baetz J Messer-Hannemann P Adekanmbi I van Duren BH Redmond A West RM Morlock MM Pandit HG

Aims. The aim of this study was to estimate the 90-day risk of revision for periprosthetic femoral fracture associated with design features of cementless femoral stems, and to investigate the effect of a collar on this risk using a biomechanical in vitro model. Materials and Methods. A total of 337 647 primary total hip arthroplasties (THAs) from the United Kingdom National Joint Registry (NJR) were included in a multivariable survival and regression analysis to identify the adjusted hazard of revision for periprosthetic fracture following primary THA using a cementless stem. The effect of a collar in cementless THA on this risk was evaluated in an in vitro model using paired fresh frozen cadaveric femora. Results. The prevalence of early revision for periprosthetic fracture was 0.34% (1180/337 647) and 44.0% (520/1180) occurred within 90 days of surgery. Implant risk factors included: collarless stem, non-grit-blasted finish, and triple-tapered design. In the in vitro model, a medial calcar collar consistently improved the stability and resistance to fracture. Conclusion. Analysis of features of stem design in registry data is a useful method of identifying implant characteristics that affect the risk of early periprosthetic fracture around a cementless femoral stem. A collar on the calcar reduced the risk of an early periprosthetic fracture and this was confirmed by biomechanical testing. This approach may be useful in the analysis of other uncommon modes of failure after THA. Cite this article: Bone Joint J 2019;101-B:779–786


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_10 | Pages 2 - 2
1 Aug 2021
Seewoonarain S Stavri R Behforootan S Abel R
Full Access

Hip fractures are associated with poor outcomes and high mortality rates of 30%. The current gold standard to measure bone fragility is a Dual-Energy X-ray Absorptiometry (DEXA) scan measuring bone mineral density. Yet DEXA under-diagnoses bone fragility by 50% (1). To combat the burden of bone fragility, this experimental study combined ultrasound (US) with a sophisticated computational algorithm, namely full wave inversion (FWI), to evaluate femoral bone structure. The aims were to assess the association of bone structure between the proximal femoral diaphysis and femoral neck; secondly to evaluate whether transverse ultrasound could assess bone structure of the proximal femoral diaphysis. Bone structure of 19 ex vivo human femora was assessed by micro-CT analysis (mean age 88.11 years, male:female 13:6)(Nikon HMXST 225). Using ImageJ/BoneJ, three 10.2mm subsections of proximal diaphysis and femoral neck underwent analysis: the total bone volume fraction, cortical parameters (bone volume fraction, porosity, thickness) and trabecular parameters (porosity, thickness, spacing and connectivity). A unique US prototype was developed to analyse fifteen femoral diaphyseal subsections using two P4-1 transducers with a novel tomography sequence (Verasonics, Matlab ver R2019a, FWI TRUST protocol). Comparative quantitative analysis of US and Micro-CT measurements was assessed (Graphpad Prism 8.3.1). Micro-CT analysis of the proximal femoral diaphysis demonstrated low correlation to the femoral neck (Pearson r −0.54 to 0.55). US was able to capture cortical structure, though a wide limit of agreement seen when compared to micro-CT analysis (Bland-Altman range 36–59% difference). This novel US technique was able to capture cortical bone structure. Improvements in methodology and technology are required to improve the analysis of trabecular bone and overall accuracy. Further evaluation of US and FWI is required to develop the technique and determine its role in clinical practice


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 10 | Pages 1281 - 1286
1 Oct 2009
Olsen M Davis ET Chiu M Gamble P Tumia N Boyle RA Schemitsch EH

The computed neck-shaft angle and the size of the femoral component were recorded in 100 consecutive hip resurfacings using imageless computer-navigation and compared with the angle measured before operation and with actual component implanted. The reliability of the registration was further analysed using ten cadaver femora. The mean absolute difference between the measured and navigated neck-shaft angle was 16.3° (0° to 52°). Navigation underestimated the measured neck-shaft angle in 38 patients and the correct implant size in 11. Registration of the cadaver femora tended to overestimate the correct implant size and provided a low level of repeatability in computing the neck-shaft angle. Prudent pre-operative planning is advisable for use in conjunction with imageless navigation since misleading information may be registered intraoperatively, which could lead to inappropriate sizing and positioning of the femoral component in hip resurfacing


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 615 - 618
1 May 2012
ten Have BLEF Brouwer MD RW van Biezen FC Verhaar JAN

The purpose of this prospective study was to evaluate the long-term clinical and radiological outcomes of revision of the femoral component of a total hip replacement using impaction bone grafting. Femoral revision with an impacted allograft was performed on 29 patients (31 hips). In all, 21 hips (68%) had grade III or IV femoral defects according to the Endo-Klinik classification. A total of 11 patients (12 hips) died before the ten-year follow-up period. Of the remaining patients, 18 patients (19 hips) were followed for 10 to 15 years; three further patients died during this time. None of the 31 stems underwent further revision of their stem. However, four stems showed extensive subsidence (> 15 mm). One of these patients had a femoral fracture that required fixation. Three other patients had a femoral fracture, two of which required fixation and the other was treated conservatively. Patients with a femoral fracture and/or severe subsidence had significantly more grade IV defects (six of seven hips; p = 0.004). One patient needed a closed reduction for dislocation. Impaction allografting in revision hip surgery gives good long-term results for femora with grades I, II and III Endo-Klinik-classified defects. Extensive subsidence and femoral fractures were seen mainly in patients with grade IV damaged femora


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 72 - 72
1 Jan 2018
O'Connor J Hill J Beverland D Dunne N Lennon A
Full Access

This study aimed to assess the effect of flexion and external rotation on measurement of femoral offset (FO), greater trochanter to femoral head centre (GT-FHC) distance, and neck shaft angle (NSA). Three-dimensional femoral shapes (n=100) were generated by statistical shape modelling from 47 CT-segmented right femora. Combined rotations in the range of 0–50° external and 0–50° flexion (in 10° increments) were applied to each femur after they were neutralised (defined as neck and proximal shaft axis parallel with detector plane). Each shape was projected to create 2D images representing radiographs of the proximal femora. As already known, external rotation resulted in a significant error in measuring FO but flexion alone had no impact. Individually, neither flexion nor external rotation had any impact on GT-FHC but, for example, 30° of flexion combined with 50°of external rotation resulted in an 18.6mm change in height. NSA averaged 125° in neutral with external rotation resulting in a moderate increase and flexion on its own a moderate decrease. However, 50° degrees of both produced an almost 30 degree increase in NSA. In conclusion, although the relationship between external rotation and FO is appreciated, the impact of flexion with external rotation is not. This combination results in apparent reduced FO, a high femoral head centre and an increased NSA. Femoral components with NSAs of 130° or 135° may historically have been based on X-ray misinterpretation. This work demonstrates that 2D to 3D reconstruction of the proximal femur in pre-op planning is a challenge


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 11 - 11
1 Jun 2017
O'Connor J Rutherford M Hill J Beverland D Dunne N Lennon A
Full Access

Unknown femur orientation during X-ray imaging may cause inaccurate radiographic measurements. The aim of this study was to assess the effect of 3D femur orientation during radiographic imaging on the measurement of greater trochanter to femoral head centre (GT-FHC) distance. Three-dimensional femoral shapes (n=100) of unknown gender were generated using a statistical shape model based on a training data of 47 CT segmented femora. Rotations in the range of 0° internal to 50° external and 50° of flexion to 0° of extension (at 10 degree increments) were applied to each femur. A ray tracing algorithm was then used to create 2D images representing radiographs of the femora in known 3D orientations. The GT-FHC distance was then measured automatically by identifying the femoral head, shaft axis and tip of greater trochanter. Uniaxial rotations had little impact on the measurement with mean absolute error of 0.6 mm and 3.1 mm for 50° for pure external rotation and 50° pure flexion, respectively. Combined flexion and external rotation yielded more significant errors with 10° around each axis introducing a mean error of 3.6 mm and 20° showing an average error of 8.8 mm (Figure 1.). In the cohort we studied, when the femur was in neutral orientation, the tip of greater trochanter was never below the femoral head centre. Greater trochanter to femoral head centre measurement was insensitive to rotations around a single axis (i.e. flexion or external rotation). Modest combined rotations caused the tip of greater trochanter to appear more distal in 2D and led to deviation from the true value. This study suggests that a radiograph with the greater trochanter appearing below femoral head centre may have been acquired with 3D rotation of the femur. For any figures or tables, please contact the authors directly by clicking on ‘Info & Metrics’ above to access author contact details


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1196 - 1201
1 Nov 2022
Anderson CG Brilliant ZR Jang SJ Sokrab R Mayman DJ Vigdorchik JM Sculco PK Jerabek SA

Aims

Although CT is considered the benchmark to measure femoral version, 3D biplanar radiography (hipEOS) has recently emerged as a possible alternative with reduced exposure to ionizing radiation and shorter examination time. The aim of our study was to evaluate femoral stem version in postoperative total hip arthroplasty (THA) patients and compare the accuracy of hipEOS to CT. We hypothesize that there will be no significant difference in calculated femoral stem version measurements between the two imaging methods.

Methods

In this study, 45 patients who underwent THA between February 2016 and February 2020 and had both a postoperative CT and EOS scan were included for evaluation. A fellowship-trained musculoskeletal radiologist and radiological technician measured femoral version for CT and 3D EOS, respectively. Comparison of values for each imaging modality were assessed for statistical significance.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 19 - 19
1 May 2019
Lamb J Matharu G van Duren B Redmond A Judge A West R Pandit H
Full Access

Introduction. Intraoperative periprosthetic femoral fractures (IOPFF) lead to reduced implant survival. A deeper understanding of predictors enables surgeons to modify techniques and patient selection to reduce the risk of IOPFF. The aim of this study was to estimate predictors of IOPFF and each anatomical subtype (calcar crack, trochanteric fracture, femoral shaft fracture) during primary THA. Methods. This retrospective cohort study included 793823 primary THAs between 2004 and 2016. Relative risks for patient, surgical and implant factors are estimated for any IOPFF fracture and for all anatomical subtypes of IOPFF. Results. Patient factors significantly increasing the risk of fracture were: female gender, American Association of Anaesthesiologists (ASA) grade 3 to 5, pre-operative diagnosis including: avascular necrosis of the hip (AVN), previous trauma, inflammatory disease, paediatric disease and previous infection. Overall risk of IOPFF associated with age was greatest in patients below 50 years and above 80 years. Risk of any fracture reduced with computer guided surgery (CGS) and in non-NHS hospitals. Non-posterior approach's increased the risk of shaft and trochanteric fracture only. Cementless implants only significantly increased the risk of calcar cracks and shaft fractures and not trochanteric fractures. Conclusions. Fracture risk increases in patients less than 50 and older than 80, females, ASA grade 3 to 5 and indications other than primary osteoarthritis. Large cumulative reduction in IOPFF risk may occur with use of cemented implants, posterior approach and CGS. IOPFF may be further reduced by future developments in cementless stem implantation and non-posterior approaches which reduce the intraoperative strain placed on the femora