Advertisement for orthosearch.org.uk
Results 1 - 20 of 35
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 88 - 88
17 Apr 2023
Aljuaid M Alzahrani S Alzahrani A Filimban S Alghamdi N Alswat M
Full Access

Cervical spine facet tropism (CFT) defined as the facets’ joints angles difference between right and left sides of more than 7 degrees. This study aims to investigate the relationship between cervical sagittal alignment parameters and cervical spine facets’ tropism. A retrospective cross-sectional study carried out in a tertiary center where cervical spine magnetic resonance imaging (MRI) radiographs of patients in orthopedics/spine clincs were included. They had no history of spine fractures. Images’ reports were reviewed to exclude those with tumors in the c-spine. A total of 96 patients was included with 63% of them were females. The mean of age was 45.53± 12.82. C2-C7 cobb's angle (CA) and C2-C7 sagittal vertical axis (SVA) means were −2.85±10.68 and 1.51± 0.79, respectively. Facet tropism was found in 98% of the sample in at least one level on either axial or sagittal plane. Axial C 2–3 CFT and sagittal C4-5 were correlated with CA (r=0.246, P 0.043, r= −278, P 0.022), respectively. In addition, C2-C7 sagittal vertical axis (SVA) was moderately correlated with axial c2-3 FT (r= −0.330, P 0.006) Also, several significant correlations were detected in our model Cervical vertebral slopes and CFT at the related level. Nonetheless, high BMI was associated with multi-level and multiplane CFT with higher odd's ratios at the lower levels. This study shows that CFT at higher levels is correlated with increasing CA and decreasing SVA and at lower levels with decreasing CA. Obesity is a risk factor for CFT


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 36 - 36
17 Nov 2023
Warren J Mengoni M
Full Access

Abstract. Objectives. While spinal fusion is known to be associated with adjacent disc degeneration, little is known on the role of the facet joints in the process, and whether their altered biomechanics following fusion plays a role in further spinal degeneration. This work aimed to develop a model and method to sequentially measure the effects of spinal fusion on lumbar facet joints through synchronisation of both motion analysis, pressure mapping and mechanical analysis. Methods. Parallel measurements of mature ovine lumbar facet joints (∼8yr old, n=3) were carried out using synchronised load and displacement measurements, motion capture during loading and pressure mapping of the joint spaces during loading. Functional units were prepared and cemented in PMMA endcaps. Displacement-controlled compression measurements were carried out using a materials testing machine (3365, Instron, USA) at 1 mm/min up to 950 N with the samples in a neutral position, while motion capture of the facet joints during compression was carried out using orthogonal HD webcams (Logitech, Switzerland) to measure the displacement of key facet joint features. The pressure mapping of load transfer during displacement was carried out using a flexible pressure sensor (6900 series, Tekscan, USA). Each sample was imaged at an isotropic resolution of 82 microns using a μCT scanner (XtremeCT, Scanco, Switzerland) to quantify the curvature within the facet joints. Results. Relative facet joint displacement under load, in a neutral position, showed more displacement (2.36 ±1.68 mm) compared to the cross-head when under compression (2.06 ±1.19 mm). Motion capture indicated the relative displacement of the facet joints was more posterior with some lateral motion. For five of the six facet joints, pressure measurement was possible only on 24±7 % of the surface due to the large change in curvature. Partially measured loads through the facets was 10.5 ±1.1 N. Conclusions. The relative displacement of the lumbar facet joints compared to the crosshead displacement was consistent with previous studies of cervical facet joints, despite the differences in anatomical geometry between cervical and lumbar joints. The difficulties in accurately measuring the load transfer through the facet joints was due to the age of the tissue and the degree of curvature of the facet joints. Synchronisation of the biomechanical data will provide a setup to assess the effect of interventions such as spinal fusion, with curvature-related issues unlikely to occur in human spines. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 217 - 217
1 Jul 2014
Ivicsics MF Bishop N Püschel K Berteau J Morlock M Huber G
Full Access

Summary. Nucleotomy almost doubles the transmitted forces on the facet joints in human lumbar spine, regardless of the amount of removed nucleus pulposus. Introduction. Low back pain involves the lumbar facet joints in 15% to 45% of the cases. The surgical intervention, nucleotomy, might also lead to painful facets with a high risk; however, its mechanism is yet to be fully understood. The aim of this study is to reveal how a small amount of nucleus removal can change the force transmission on the facets. 1.1.1.1 Methods. Nine human lumbar motion segments with a median age of 48 years (interquartile range: 8.3) were tested quasi-statically (0.2 Hz) in extension and flexion (+/−5°) under constant compression loading (700 N). Specimens were tested in vitro by a servo-hydraulic test rig (MTS, USA) equipped with an additional superstructure enabling independent actuation of axial compression, extension-flexion and anterior-posterior shear on the top of the specimen. Forces and moments were measured beneath the specimen. The test method is based on recording intact and nucleotomy performed (range of removed nucleus 0.888–1.708 g) kinematics, which were applied in sequence, at different reduction stages of the same specimen. In the last steps, the facets were the only force transmitting structures, therefore, the load cell beneath the specimen revealed the force transmission on the facets. 1.1.2 Results. The average proportion of force transmitted through the facets increased significantly due to nucleotomy for both an intact capsular ligament (caps. lig.) (p=0.008) from 8.6% (5.2) to 15.8% (6.2), and without a caps. lig. from 8.4% (2.3) to 10.3% (4.9, p = 0.008). Amount of removed nucleus did not show statistically significant correlation to the force increase on facets due to nucleotomy (p>0.19). Forces on the facets were the highest in extension: fully intact 10.7% (6.6), nucleotomy with caps. lig. 19.0% (9.6), intact without caps. lig. 9.37% (3.42), and nucleotomy without caps. lig. 12.6% (6.5). Discussion. Results show, that even a small amount of nucleus removal increase the transmitted forces on facet joints, independent of the amount of removed nucleus. Therefore, a surgeon's decision on the amount of nucleus to remove might perhaps be based on aspects other than facet loading - for example, the avoidance of reherniation. Since facet loading is highest in extension, patients after nucleotomy should perhaps limit this motion as far as possible


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 72 - 72
1 Mar 2013
Akilapa O Prem H
Full Access

Background. Surgical resection of middle facet tarsal coalition is a well documented treatment option in symptomatic individuals that do not respond to conservative treatment. The ability to return to full recreational activity post resection may have implications on foot biomechanics and possibly degenerative changes in the subtalar and adjacent joints. Hypothesis. Open resection of middle facet tarsal coalitions should improve subtalar joint motion and biomechanical function and facilitate return to sports. Aim. The aim of this study was to assess the outcomes of open resection of middle facet tarsal coalitions (MFTCs) with particular emphasis on return to sports. Methods. Retrospective review of clinical and radiographic records of paediatric and adolescent patients who had open resection of middle facet tarsal coalitions. The ankle and hind foot were evaluated according to the American Orthopaedic Foot and Ankle Society Ankle-Hind foot Scale (AOFAS). We also quantified the return-to-activity time after tarsal coalition surgery. Results. We identified thirteen patients (Mean age; 13.7years Range; 7–21 years) with eighteen middle facet tarsal coalitions operated over a seven year period. Ten patients (12 feet) who underwent resection had an average return to recreational activity time of approximately twelve weeks and reported better exercise tolerance post resection. Conclusion. Surgical excision of middle facet tarsal coalitions has a favourable outcome with respect to return to sports


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 24 - 24
1 May 2012
Bottomley N Javaid M Gill H Dodd C Murray D Beard D Price A
Full Access

Introduction. Anteromedial gonarthrosis is a common well described pattern of knee osteoarthritis with cartilage wear beginning in the anteromedial quadrant of the medial tibial plateau in the presence of an intact and functioning ACL. It is well known that mechanical factors such as limb alignment and meniscal integrity affect the progression of arthritis and there is some evidence that the morphology of the tibial plateau may be a risk factor in the development of this disease. The extension facet angle is the angle of the downslope of the anterior portion of the medial tibial plateau joint surface in relation to the middle portion on a sagittal view. If this is an important factor in the development of AMG there may be potential for disease modifying intervention. This study investigates if there is a significant difference in this angle as measured on MRI between a study cohort with early AMG (partial thickness cartilage damage and intact ACL) and a comparator control cohort of patients (no cartilage damage and ACL rupture). Methods. 3 Tesla MRI scans of 99 patients; 54 with partial thickness cartilage damage and 44 comparitors with no cartilage damage (acute ACL rupture) were assessed. The extension facet angle was measured (Osirix v3.6) using a validated technique on two consecutive MRI T2 sagittal slices orientated at the mid-coronal point of the medial femoral condyle. (InterClass Correlation 0.95, IntraClass Correlation 0.97, within subject variation of 1.1° and coefficient of variation 10.7%). The mean of the two extension angle values was used. The results were tabulated and analysed (R v2.9.1). Results. Of the 99 knees, 38 were female and 61 male; 44 left knees and 55 right. The mean extension facet angle for the partial thickness group was 12.7° (SD 3.35) and for the comparator group 8.7° (SD 3.09). There was a significant difference between these 2 groups (Mann Whitney U, p<0.001). Although there were significantly more men than women in the comparator group, stratification analysis showed that there was no effect of gender on the mean extension facet angle. There was no effect of age on EFA in either group. Discussion. There is a significance difference in the extension facet angle between patients with AMG with only partial thickness cartilage loss and a comparator group. This has not been shown in a study group of this size before. Since none of the subjects had full thickness cartilage loss it is unlikely that this difference is due to bone attrition changing the angle as part of the disease process but this is an important area for further study. We believe that a higher medial tibial extension facet angle alters the mechanics within the medial compartment, placing these patients at higher risk of developing AMG. This may present an opportunity for risk factor modification, for example osteotomy


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 30 - 30
1 Apr 2018
Netzer C Distel P Wolfram U Schären S Geurts J
Full Access

Introduction

Facet joint osteoarthritis (FJOA) is a prominent clinical hallmark of degenerative spine disorders. During disease progression, cartilage and subchondral bone tissues undergo increased turnover and remodeling. The structural changes to the subchondral tissue of FJOA have not been studied thus far. In this study, we performed a micro computed tomography (µCT) study of the subchondral cortical plate (SCP) and trabecular bone (STB) in FJOA and determined osteoarthritis-specific alterations.

Methods

Twenty-four patients (11 male, 13 female, median age 65) scheduled for decompression and stabilization surgery for degenerative spinal stenosis were included in this study. FJOA specimens were harvested during surgery and analyzed by µCT. Bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp) and trabecular number (Tb.N) were evaluated using CT Analyser. Lumbar facet joints without chondropathy from cadaveric specimens (9 male, 6 female, median age 57) served as healthy controls. Age-, gender- and disease-specific effects were identified by ANOVA (p<0.05) and significant differences confirmed by Bonferroni's post-test. Association between age and structural parameters was determined using correlation analysis.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 77 - 77
1 Dec 2020
Ivanov S Stefanov A Zderic I Gehweiler D Richards G Raykov D Gueorguiev B
Full Access

Displaced intraarticular calcaneal fractures are debilitating injuries with significant socioeconomic and psychological effects primarily affecting patients in active age between 30 and 50 years. Recently, minimally and less invasive screw fixation techniques have become popular as alternative to locked plating. The aim of this study was to analyze biomechanically in direct comparison the primary stability of 3 different cannulated screw configurations for fixation of Sanders type II-B intraarticular calcaneal fractures. Fifteen fresh-frozen human cadaveric lower limbs were amputated mid-calf and through the Chopart joint. Following, soft tissues at the lateral foot side were removed, whereas the medial side and Achilles tendon were preserved. Reproducible Sanders type II-B intraarticular fracture patterns were created by means of osteotomies. The proximal tibia end and the anterior-inferior aspect of the calcaneus were then embedded in polymethylmethacrylate. Based on bone mineral density measurements, the specimens were randomized to 3 groups for fixation with 3 different screw configurations using two 6.5 mm and two 4.5 mm cannulated screws. In Group 1, two parallel longitudinal screws entered the tuber calcanei above the Achilles tendon insertion and proceeded to the anterior process, and two transverse screws fixed the posterior facet perpendicular to the fracture line. In Group 2, two parallel screws entered the tuber calcanei below the Achilles tendon insertion, aiming at the anterior process, and two transverse screws fixed the posterior facet. In Group 3, two screws were inserted along the bone axis, entering the tuber calcanei above the Achilles tendon insertion and proceeding to the central-inferior part of the anterior process. In addition, one transverse screw was inserted from lateral to medial for fixation of the posterior facet and one oblique screw – inserted from the posterior-plantar part of the tuber calcanei – supported the posterolateral part of the posterior facet. All specimens were tested in simulated midstance position under progressively increasing cyclic loading at 2 Hz. Starting from 200N, the peak load of each cycle increased at a rate of 0.1 N/cycle. Interfragmentary movements were captured by means of optical motion tracking and triggered mediolateral x-rays. Plantar movement, defined as displacement between the anterior process and the tuber calcanei at the most inferior side was biggest in Group 2 and increased significantly over test cycles in all groups (P = 0.001). Cycles to 2 mm plantar movement were significantly higher in both Group 1 (15847 ± 5250) and Group 3 (13323 ± 4363) compared to Group 2 (4875 ± 3480), P = 0.048. Medial gapping after 2500 cycles was significantly bigger in Group 2 versus Group 3, P = 0.024. No intraarticular displacement was observed in any group during testing. From biomechanical perspective, screw configuration implementing one oblique screw seems to provide sufficient hindfoot stability in Sanders Type II-B intraarticular calcaneal fractures under dynamic loading. Posterior facet support by means of buttress or superiorly inserted longitudinal screws results in less plantar movement between the tuber calcanei and anterior fragments. On the other hand, inferiorly inserted longitudinal screws seem to be associated with bigger interfragmentary movements


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 9 - 9
2 Jan 2024
Vadalà G Papalia G Russo F Ambrosio L Franco D Brigato P Papalia R Denaro V
Full Access

The use of intraoperative navigation and robotic surgery for minimally invasive lumbar fusion has been increasing over the past decade. The aim of this study is to evaluate postoperative clinical outcomes, intraoperative parameters, and accuracy of pedicle screw insertion guided by intraoperative navigation in patients undergoing lumbar interbody fusion for spondylolisthesis. Patients who underwent posterior lumbar fusion interbody using intraoperative 3D navigation since December 2021 were included. Visual Analogue Scale (VAS), Oswestry Disability Index (ODI), and Short Form Health Survey-36 (SF-36) were assessed preoperatively and postoperatively at 1, 3, and 6 months. Screw placement accuracy, measured by Gertzbein and Robbins classification, and facet joint infringement, measured by Yson classification, were assessed by intraoperative Cone Beam CT scans performed at the end of instrumentation. Finally, operation time, intraoperative blood loss, hospital stay, and screw insertion time were evaluated. This study involved 50 patients with a mean age of 63.7 years. VAS decreased from 65.8±23 to 20±22 (p<.01). ODI decreased from 35.4%±15 to 11.8%±14 (p<.01). An increase of SF-36 from 51.5±14 to 76±13 (p<.01) was demonstrated. The accuracy of “perfect” and “clinically acceptable” pedicle screw fixation was 89.5% and 98.4%, respectively. Regarding facet violation, 96.8% of the screws were at grade 0. Finally, the average screw insertion time was 4.3±2 min, hospital stay was 4.2±0.8 days, operation time was 205±53 min, and blood loss was 169±107 ml. Finally, a statistically significant correlation of operation time with hospital stay, blood loss and placement time per screw was found. We demonstrated excellent results for accuracy of pedicle screw fixation and violation of facet joints. VAS, ODI and SF-36 showed statistically significant improvements from the control at one month after surgery. Navigation with intraoperative 3D images represents an effective system to improve operative performance in the surgical treatment of spondylolisthesis


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 85 - 85
1 Dec 2020
Stefanov A Ivanov S Zderic I Baltov A Rashkov M Gehweiler D Richards G Gueorguiev B Enchev D
Full Access

Treatment of comminuted intraarticular calcaneal fractures remains controversial and challenging. Anatomic reduction with stable fixation has demonstrated better outcomes than nonoperative treatment of displaced intraarticular fractures involving the posterior facet and anterior calcaneocuboid joint (CCJ) articulating surface of the calcaneus. The aim of this study was to investigate the biomechanical performance of three different methods for fixation of comminuted intraarticular calcaneal fractures. Comminuted calcaneal fractures, including Sanders III-AB fracture of the posterior facet and Kinner II-B fracture of the CCJ articulating calcaneal surface, were simulated in 18 fresh-frozen human cadaveric lower legs by means of osteotomies. The ankle joint, medial soft tissues and midtarsal bones along with the ligaments were preserved. The specimens were randomized according to their bone mineral density to 3 groups for fixation with either (1) 2.7 mm variable-angle locking anterolateral calcaneal plate in combination with one 4.5 mm and one 6.5 mm cannulated screw (Group 1), (2) 2.7 mm variable-angle locking lateral calcaneal plate (Group 2), or (3) interlocking calcaneal nail with 3.5 mm screws in combination with 3 separate 4.0 mm cannulated screws (Group 3). All specimens were biomechanically tested until failure under axial loading with the foot in simulated midstance position. Each test commenced with an initial quasi-static compression ramp from 50 N to 200 N, followed by progressively increasing cyclic loading at 2Hz. Starting from 200 N, the peak load of each cycle increased at a rate of 0.2 N/cycle. Interfragmentary movements were captured by means of optical motion tracking. In addition, mediolateral X-rays were taken every 250 cycles with a triggered C-arm. Varus deformation between the tuber calcanei and lateral calcaneal fragments, plantar gapping between the anterior process and tuber fragments, displacement at the plantar aspect of the CCJ articular calcaneal surface, and Böhler angle were evaluated. Varus deformation of 10° was reached at significantly lower number of cycles in Group 2 compared to Group 1 and Group 3 (P ≤ 0.017). Both cycles to 10° plantar gapping and 2 mm displacement at the CCJ articular calcaneal surface revealed no significant differences between the groups (P ≥ 0.773). Böhler angle after 5000 cycles (1200 N peak load) had significantly bigger decrease in Group 2 compared to both other groups (P ≤ 0.020). From biomechanical perspective, treatment of comminuted intraarticular calcaneal fractures using variable-angle locked plate with additional longitudinal screws or interlocked nail in combination with separate transversal screws seems to provide superior stability as opposed to variable-angle locked plating only


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 57 - 57
1 Jan 2017
Harris S Dhaif F Iranpour F Aframian A Cobb J Auvinet E Howell S Rivière C
Full Access

Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction. Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment. The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects. Software developed in-house fitted circles to the deepest points in the trochlear grooves of the implant and the cartilage. The centre of the cartilage trochlear circle was found and planes, rotated from horizontal (0%, approximately cutting through the proximal trochlea) through to vertical (100%, cutting through the distal trochlea) rotated around this, with the axis of rotation parallel to the flexion facet axis. These planes cut through the trochlea allowing comparison of cartilage and implant surfaces at 1 degree increments. Trochlear groove geometry was quantified with (1) groove radial distance from centre of rotation cylinder (2) medial facet radial distance (3) lateral facet radial distance and (4) sulcus angle, along the length of the trochlea. Data were normalised to the mean trochlear radius. The orientation of the groove was measured in the coronal and axial plane relative to the flexion facet axis. Inter- and intra-observer reliability was measured. In the coronal plane, the implant trochlear groove was oriented a mean of 8.7° more valgus (p<0.001) than the normal trochlea. The lateral facet was understuffed most at the proximal groove between 0–60% by a mean of 5.3 mm (p<0.001). The medial facet was understuffed by a mean of 4.4 mm between 0–60% (p<0.001). Despite attempts to design femoral components with a more anatomical trochlea, there is significant understuffing of the trochlea, which could lead to reduced extensor moment of the quadriceps and contribute to patient dissatisfaction


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 95 - 95
1 Jan 2017
Rivière C Shah H Auvinet E Iranpour F Harris S Cobb J Howell S Aframian A
Full Access

Trochlear geometry of modern femoral implants is designed for mechanical alignment (MA) technique for TKA. The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique, this could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona. ®. implant (Zimmer, Warsaw, USA) is kinematically aligned. A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona. ®. prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics and Acrobot Modeller software, respectively. Persona. ®. implants were laser scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model. In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea. Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed. Varus-valgus rotation between the native and prosthetic trochleae was significantly different (p<0.001), with the prosthetic trochlear groove being on average 7.9 degrees more valgus. Medial and lateral facets and trochlear groove were significantly understuffed (3 to 6mm) postoperatively in the proximal two thirds of the trochlear, with greatest understuffing for the lateral facet (p<0.05). The mean medio-lateral translation and internal-external rotation of the groove and the sulcus angle showed no statistical differences, pre and postoperatively. Kinematic alignment of Persona. ®. implants poorly restores native trochlear geometry. Its clinical impact remains to be defined


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 216 - 216
1 Jul 2014
Melnyk A Wen T Chak J Kelly A Cripton P Fisher C Dvorak M Oxland T
Full Access

Summary Statement. Spinal flexibility in bending and axial torque has been shown to exhibit very modest changes with advancing disc degeneration. This study is the first to address the possible relationship in pure anterior shear and no clear relationship was observed. Introduction. Disc degeneration (DD) is a risk factor for low back pain. Stable or unstable spine segments may be treated with an isolated decompression or instrumented stabilization, respectively. The effect of DD on spinal flexibility has been addressed by several groups in bending but not in shear; a highly relevant load direction in the lumbar spine is anterior shear. The objective of our study was to determine the effect of DD on anterior translation and specimen stiffness under shear loading in an in vitro model of degenerative spondylolisthesis. Methods. Magnetic resonance images were obtained for human cadaveric lumbar FSUs (N=30). Disc degeneration was assessed with the Pfirrmann five-point grading scale. Three surgeons independently graded the discs and the grade common to at least two of the surgeons was assigned to that specimen. Each specimen was then tested in three sequential states: intact, facet destabilization, and disc destabilization, with the latter two states representing the clinical scenario of degenerative lumbar spondylolisthesis. The specimens were loaded with a constant 300 N axial compressive force, representing body weight, combined with a cyclic anterior shear force (5–250 N). Vertebral translation was tracked with an optoelectronic motion capture system. Kruskal-Wallis ANOVA and multiple comparison Dunn's tests were performed to determine the effect of DD on anterior translation and specimen stiffness. Results. There was only one specimen with disc grade V, and it was grouped with specimens with disc grade IV for the statistical analyses. DD had no effect on anterior translation or specimen stiffness for the intact and disc destabilization conditions. In the facet destabilization condition, specimens with disc grade II translated more than those with disc grades IV and V (p=0.03). Stiffness increased with DD in the facet destabilization condition (ANOVA p=0.04; Dunn's test was not significant). However, we re-analyzed the data with each surgeon's disc grades and found no significant differences in any of the specimen conditions for all three surgeons. Discussion. In the original data analysis, the translation results showed a trend to reduced anterior translation in shear with advancing degeneration only in the facet destabilization condition. These results suggest that shear stiffness of an intact specimen is not affected by overall degeneration, except in the case where the facets are not competent to resist load. In the subsequent data analyses, no significant effects were found. These findings indicate the sensitivity of the analyses to the assignment of disc grade. There are numerous disc grading scales reported in the literature and it is not clear which scale best defines disc degeneration. We are continuing to assess our methods to determine the most appropriate method of defining disc degeneration by disc grade


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 46 - 46
1 Mar 2021
Silvestros P Preatoni E Gill HS Cazzola D
Full Access

Abstract. Objectives. Catastrophic neck injuries in rugby tackling are rare (2 per 100,000 players per year) with 38% of these injuries occurring in the tackle. The aim of this study was to determine the primary mechanism of cervical spine injury during rugby tackling and to highlight the effect of tackling technique on intervertebral joint loads. Methods. In vivo and in vitro experimental data were integrated to generate realistic computer simulations representative of misdirected tackles. MRI images were used to inform the creation of a musculoskeletal model. In vivo kinematics and neck muscle excitations were collected during lab-based staged tackling of the player. Impact forces were collected in vitro using an instrumented anthropometric test device during experimental simulations of rugby collisions. Experimental kinematics and muscle excitations were prescribed to the model and impact forces applied to seven skull locations (three cranial and four lateral). To examine the effects of technique on intervertebral joint loads the model's neck angle was altered in steps of 5° about each rotational axis resulting in a total of 1,623 experimentally informed simulations of misdirected tackles. Results. Neck flexion angles and cranial impact locations had the largest effects on maximal compression, anterior shear and flexion moment loads. During posterior cranial impacts compression forces and flexion moments increased from 1500 to 3200 N and 30 to 60 Nm respectively between neck angles of 30° extension and 30° flexion. This was more evident at the C5-C6 and C6-C7 joints. Anterior shear loads remained stable throughout neck angle ranges however during anterior impacts they were directed posteriorly when the neck was flexed. Conclusions. The combination of estimated joint loads in the lower cervical spine support buckling as the primary injury mechanism of anterior bilateral facet dislocations observed in misdirected rugby tackles and highlights the importance of adopting a correct tackling technique. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1189 - 1195
1 Nov 2000
Iwaki H Pinskerova V Freeman MAR

In six unloaded cadaver knees we used MRI to determine the shapes of the articular surfaces and their relative movements. These were confirmed by dissection. Medially, the femoral condyle in sagittal section is composed of the arcs of two circles and that of the tibia of two angled flats. The anterior facets articulate in extension. At about 20° the femur ‘rocks’ to articulate through the posterior facets. The medial femoral condyle does not move anteroposteriorly with flexion to 110°. Laterally, the femoral condyle is composed entirely, or almost entirely, of a single circular facet similar in radius and arc to the posterior medial facet. The tibia is roughly flat. The femur tends to roll backwards with flexion. The combination during flexion of no antero-posterior movement medially (i.e., sliding) and backward rolling (combined with sliding) laterally equates to internal rotation of the tibia around a medial axis with flexion. About 5° of this rotation may be obligatory from 0° to 10° flexion; thereafter little rotation occurs to at least 45°. Total rotation at 110° is about 20°, most if not all of which can be suppressed by applying external rotation to the tibia at 90°


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 134 - 134
1 Nov 2018
Gray R
Full Access

Advancements in treating complex distal radius fractures. We will review tips and tricks in the treatment of complex articular distal radius fractures. We will discuss the treatment of carpal instability resulting from fracture of the volar marginal fragment. We will cover optimizing surgical exposure to address fractures extending from the radial styloid to the lunate facet. During this session, we will review the latest techniques for treating these complex distal radius fractures


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 113 - 113
1 Jan 2017
Iranpour F
Full Access

Constitutional knee varus increases the risk of medial OA disease due to increase in the knee adduction moment and shifting of the mechanical axis medially. Hueter-Volkmann’s law states that the amount of load experienced by the growth plate during development influences the bone morphology. For this reason, heightened sports activity during growth is associated with constitutional varus due to added knee adduction moment. In early OA, X-rays often show a flattened medial femoral condyle extension facet (EF). However, it is unknown whether this is a result of osteoarthritic wear, creep deformation over decades of use, or an outcome of Hueter-Volkmann’s law during development. A larger and flattened medial EF can bear more weight, due to increased load distribution. However, a flattened EF may also extrude the meniscus, leading meniscus degeneration and joint failure. Therefore, this study aimed to investigate whether varus knees have flattened medial EFs of both femur and tibia in a cohort of patients with no signs yet of bony attrition. Segmentation and morphology analysis was conducted using Materialise software (version 8.0, Materialise Inc., Belgium). This study excluded knees with bony attrition of the EFs based on Ahlbäck criteria, intraoperative findings, and operation notes history. Standard reference frames were used for both the femur and tibia to ensure reliable and repeatable measurements. The hip-knee-angle (HKA) angle defined varus or valgus knee alignment. Femur: The femoral EFs and flexion facets (FFs) had best-fit spheres fitted with 6 repetitions. Tibia: The slopes of the antero-medial medial tibial plateau were approximated using lines. Results 72 knees met the inclusion and exclusion criteria. The average age was 59 ± 11 years. The youngest was 31 and the oldest 84 years. Thirty-three were male and 39 were female. There was good intra- and inter-observer reliability for EF sphere fitting. Femur: The results demonstrated that the medial femoral condyle EF is flattened in knees with constitutional varus, as measured by the Sphere Ratios between the medial and lateral EF (varus versus straight: p = 0.006), and in the scaled values for the medial EF sphere radius (varus versus straight: p = 0.005). There was a statistically significant, moderate and positive correlation between the medial femoral EF radius, and the medial femoral EF-FF AP offset. Tibia: There was a statistically significant difference between the steepness of the slopes of the medial tibial plateau EF in varus and valgus knees, suggesting varus knees have a less concave (flatter) medial EF. Conclusions In comparison to straight knees, varus knees have flattened medial EFs in both femur and tibia. As this was the case in knees with no evidence of bony attrition, this could mean flattened medial EFs may be a result of medial physis inhibition during development, due to Hueter-Volkmann’s law. Flattened medial EFs may increase load distribution in the medial compartment, but could also be a potential aetiology in primary knee OA due to over extrusion of the medial meniscus and edge loading


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 830 - 834
1 Jun 2009
Pinskerova V Samuelson KM Stammers J Maruthainar K Sosna A Freeman MAR

There has been only one limited report dating from 1941 using dissection which has described the tibiofemoral joint between 120° and 160° of flexion despite the relevance of this arc to total knee replacement. We now provide a full description having examined one living and eight cadaver knees using MRI, dissection and previously published cryosections in one knee. In the range of flexion from 120° to 160° the flexion facet centre of the medial femoral condyle moves back 5 mm and rises up on to the posterior horn of the medial meniscus. At 160° the posterior horn is compressed in a synovial recess between the femoral cortex and the tibia. This limits flexion. The lateral femoral condyle also rolls back with the posterior horn of the lateral meniscus moving with the condyle. Both move down over the posterior tibia at 160° of flexion. Neither the events between 120° and 160° nor the anatomy at 160° could result from a continuation of the kinematics up to 120°. Therefore hyperflexion is a separate arc. The anatomical and functional features of this arc suggest that it would be difficult to design an implant for total knee replacement giving physiological movement from 0° to 160°


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 43 - 43
1 Apr 2017
Arts J Marangalou JH Meijer G Ito K van Rietbergen B Homminga J
Full Access

Background. Finite element (FE) models have become a standard pre-clinical tool to study biomechanics of spine and are used to simulate and evaluate different strategies in scoliosis treatment: examine their efficacy as well as the effect of different implant design parameters. The goal of this study is to investigate, in a system of rods and laminar wires, the effect of the number of wires and their pre-stress on whole spine stiffness. Methods. A generic FE model was developed to represent a full human spine, including vertebrae, intervertebral discs, ligaments, facet and costovertebral joints, and ribcage. Intervertebral discs were modeled with 3D rebar elements with linear elastic material properties. Vertebrae, ribs, sternum, facet joints, cartilage and endplates were modeled with brick elements, and costal muscles with shell elements with linear elastic properties. Furthermore, ligaments were modeled with truss elements with nonlinear hypo-elastic properties. The spine model was instrumented from T7 to T12 with rods and wires modeled as titanium. Nonlinear contact properties were defined for rib neck-vertebra, transverse processes-rib and facet joint sets. The FE model was loaded in flexion and the whole spine instantaneous stiffness was calculated for different wire pre-stressing levels (0.1 to 2 MPa). Similar analyses were performed with changed numbers of wires and whole spine stiffness was calculated. Results. The results show that with increasing the pre-stress level the whole spine instantaneous stiffness increases by up to 6%. Reducing the number of wires decreases the whole spine stiffness almost linearly by 5%. These changes also alter center of rotation of the spine. The results suggest that pre-stressing and number of wires have an effect on whole spine stiffness. Conclusions. In summary, the develop FE model can be used to simulate different treatment strategies and to improve implant designs used in surgical treatment of scoliosis. Level of evidence. FEA study


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 62 - 62
1 Jan 2017
Mooney I Scott D Kocialkowski C Gosal H Karadia S
Full Access

At our district general hospital in the southwest of England, around 694 total knee replacements (TKR) are performed annually. Since spring 2013 we have been using an enhanced recovery protocol for all TKR patients, yet we have neither assessed compliance with the protocol nor whether its implementation has made a discernible and measurable difference to the delivery of care in this patient population. Enhanced recovery after surgery (ERAS) protocols are multi-modal care pathways designed to aid recovery. They are based on best evidence and promote a multi-disciplinary approach which standardises care and encompasses nutrition, analgesia and early mobilisation throughout the pre, intra and postoperative phases of an inpatient stay. ERAS has been found to reduce length of stay (LOS), readmission rates and analgesic requirements following surgery. 1, 2, 3. Additionally, they have been shown to improve range of knee movement following TKR and improve mobility, patient satisfaction whilst reducing mortality and morbidity. 4, 5, 6. With these benefits in mind, we sought to investigate how well our trauma and orthopaedic department was complying with a local ERAS protocol and whether we could replicate the benefits seen within the literature. Following approval from our local audit office in September 2015 we generated a patient list of elective TKR patients under the same surgeon before and after the implementation of the ERAS protocol. Using discharge summaries and patient notes we extracted data for 39 patients operated on prior to the ERAS implementation between January 2011 and December 2012 and 27 patients following its introduction between January 2014 and September 2015. Data collected included length of stay, time to discharge from inpatient physiotherapy and use of analgesia and antiemetics. Alongside this we audited the compliance with all facets of the local ERAS protocol. There was no statistically significant difference between the 2 groups in terms of demographics or pre-operative morbidity. Overall compliance with the ERAS protocol was good but there was some variability, especially with intraoperative medication and type of anaesthesia which was likely due to individual patient factors. Compliance with postoperative analgesia was especially good with 93% of patients receiving all 4 suggested analgesics within the ERAS group. Length of stay (LOS) was significantly reduced by 0.5 days per patient (p value < 0.4). Overall compliance with the ERAS protocol was good but there was some variability, especially with intraoperative medication and type of anaesthesia, which was likely due to individual patient factors. Compliance with postoperative analgesia was especially good with 93% of patients receiving all suggested analgesics within the ERAS group. In terms of LOS, we found a statistically significant difference between the pre-ERAS and ERAS group of 0.5 days per patient. Within the context of our DGH, a 0.5 day reduction in LOS translates to around 350 bed days per year and a potential saving of GBP 105,000 (EUR 132,000) making this a clinically significant finding


Bone & Joint 360
Vol. 10, Issue 3 | Pages 38 - 39
1 Jun 2021
Das A